is often of interest for a competing risks data analysis.

There is rich literature which evaluates direct covariate e ects on cumulative incidence for clustered competing risks data. Scheike et al. (2010) studied a semiparametric random e ects model based on the direct binomial modeling, where the marginal cumulative incidence functions follow a generalized semiparametric additive model. Logan et al. (2011) proposed a pseudovalue approach based on the jackknife estimator and a generalized estimating equation. Ruan and Gray (2008) proposed a non-parametric multiple imputation method. Zhou et al. (2012) extended the proportional subdistribution hazards (PSH) model of Fine and Gray (1999) to clustered competing risks data. However, the asymptotic results of all of these methods are limited to covariate-independent censoring. And Zhou et al. (2012) is limited to the PSH structure. In practice, the censoring distribution may depend on some covariates and the PSH assumption may not hold. Addressing these limitations under the strati ed PSH model is crucial in practice because many clinicians and investigators widely use the PSH model of Fine and Gray (1999) for competing risks data analysis.

Therefore, we study a strati ed PSH model with covariate-adjusted censoring weight for clustered data in this article. The survival probability of censoring is estimated using the marginal strati ed proportional hazards model. Inay InH()-4305415(PSH)]TJ 0 -12.96(co)28(

and the at-risk indicator associated with censoring, respectively. Let $_{ij} = 1$ if the jth stratum has at least one subject from cluster i; otherwise $_{ij} = 0$.

We assume the censoring distribution follows the strati ed proportional hazards model (Cox, 1972):

$$C_{j}(t; Z_{ijk}) = C_{0j}(t) \exp(\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right] Z_{ijk}); j = 1; \dots; S;$$

$$(1)$$

where $C_{0j}(t)$ is an unspecied baseline hazard function and $_{0}$ is the true parameter vector for censoring. De ne

$$S_{Cj}^{(r)}(\ ;t) = \frac{1}{n_j} \sum_{i=1}^{X^n} \sum_{k=1}^{ij} Y_{ijk}^C(t) Z_{ijk}^{N-r} \exp(-|Z_{ijk}|); \ j = 1; \dots; S;$$

for $\mathbf{r} = 0$; 1; 2 such that $\mathbf{a}^{\mathbf{N} \mathbf{r}} = 1$, $\mathbf{a}^{\mathbf{N} \mathbf{1}} = \mathbf{a}$ and $\mathbf{a}^{\mathbf{N} \mathbf{2}} = \mathbf{a}\mathbf{a}^{\mathbf{1}}$ for \mathbf{a} . The score function for is

$$U_{C}() = \frac{X^{n} X^{S}}{\underset{i=1}{\overset{ij}{j=1}}{\overset{ij}{s=1}}} \frac{X^{ij} Z^{R}}{\underset{k=1}{\overset{c}{s=1}}{\overset{c}{s=1}}} Z_{ijk} \frac{S_{Cj}^{(1)}(;u)}{S_{Cj}^{(0)}(;u)}; dN_{ijk}^{C}(u) = 0:$$
(2)

Ret b be the estimator for $_{0}$ from (2). The Breslow-type estimator of $_{C0j}(t) =$ $_{0}^{r}$ c_{0j} (t) is

$$b_{C0j}(t) = \frac{1}{n_j} \frac{X^n}{\sum_{i=1}^{j=1}} \frac{X^{n_i}}{\sum_{k=1}^{j=1}} \frac{X^{n_i}}{\sum_{k=1}^{j=1}} \frac{X^n_{ijk}(s)}{S^{(0)}_{Cj}(b;s)}$$

Thus, the estimated survival probability of the censoring distribution is $\mathbf{\Phi}_{Ci}$ (t j Z_{iik}) = $\begin{array}{ll} \exp f & b_{C0j}\left(t\right) \exp (b^{|} \, Z_{ijk} \,) g . \\ \text{The covariate-adjusted censoring weight function is } \psi_{ijk}^{COX}\left(t\right) \, = \, I \left(C_{ijk} \, X_{ijk} \, ^{\wedge} \right) \\ \end{array}$

t) $\Phi_{C;j}(t; Z_{ijk}) = \Phi_{C;j}(X_{ijk} \wedge t; Z_{ijk})$. For j = 1; ...; S; de ne

$$S_{COX;j}^{(r)}(;t) = \frac{1}{n_j} \frac{X^n}{\sum_{i=1}^{i=1}^{i}} \frac{X^{i_i}}{\sum_{k=1}^{i=1}} \psi_{ijk}^{COX}(t) Y_{ijk}^1(t) Z_{ijk}^{N-r} \exp(|Z_{ijk}|)$$

Our main interest is to evaluate the direct e ects of covariates on the cumulative incidence function of Cause 1, $F_{1j}(t \ j \ Z_{ijk}) = P(T_{ijk} \ t; \ _{ijk} = 1 \ j \ Z_{ijk})$. The strati ed PSH model for Cause 1 is

$${}_{1j}(t j Z_{ijk}) = {}_{10j}(t) \exp({}_{0}^{l} Z_{ijk}); j = 1; \dots; S;$$
(3)

where $_{10j}(t)$ is an unspecied baseline subdistribution hazard function and $_0$ is the true parameter vector. We estimate $_0$ in (3) by setting the following score equation equal to zero:

Denote the estimator of $_0$ as ^b. The Breslow-type estimator of the cumulative baseline subdistribution hazard function of Cause 1, $_{10j}(t) = _{0}^{t} _{10j}(s)$, for stratum j is

$$b_{10j}(t) = \frac{1}{n_j} \sum_{0}^{L} \frac{1}{S_{COX;j}^{(0)}(b;s)} \sum_{i=1}^{X^n} \sum_{i=1}^{X^{i_j}} \frac{X^{i_j}}{k=1} \sqrt{b_{ijk}^{COX}(s)} dN_{ijk}^1(s)$$

3. Asymptotic Properties

We establish the asymptotic properties of the proposed estimators in this section. De ne $M_{ijk}^{1}(t) = N_{ijk}^{1}(t) = V_{ijk}^{1}(u)e^{\int_{0}^{L}Z_{ijk}} d_{10j}(u)$ and $M_{ijk}^{C}(t) = N_{ijk}^{C}(t)$ $R_{t}^{t}Y_{ijk}(u)e^{\int Z_{ijk}} d_{C0j}(u)$ for Cause 1 and censoring processes, respectively. We assume the following conditioned sume the following conditions:

- (A1) $P(T_{ijk} >) > 0$ and $P(C_{ijk} >) > 0$ for all i, j and k.
- (A2) The covariates Z are bounded almost surely.
- (A3) $_{0 \text{ C0j}}(t)dt < 1 \text{ for } j = 1; \dots; S.$ (A4) $_{R}^{1=n} @U_{C}(_{0})=@_{0}^{1} \text{ converges to } _{C}(_{0}) \text{ which is positive de nite.}$ (A5) $_{0 \text{ 10j}}(t)dt < 1 \text{ for } j = 1; \dots; S.$ (A6) $_{1=n}^{1=n} @U_{COX}(_{0})=@_{0}^{1} \text{ converges to } (_{0}) \text{ which is positive de nite.}$

- (A7) There exists a neighborhood B_C of $_0$ and $s_{Cj}^{(r)}$ dened on B_C [0;] such

 $n^{1=2}(\begin{array}{cc} b & \\ \end{array} _{0})$ converges in distribution to a zero-mean normal distribution with covariance matrix $(\begin{array}{cc} \\ \end{array} _{0}) \ ^{1} \quad (\begin{array}{cc} \\ \end{array} _{0}) \ ^{1},$ where

$$= E^{n} \sum_{\substack{1:: \\ 1:: \\ 1:: \\ i:: \\ i::$$

The expression for $q_{ijk}^{(1)}(u)$ and its proof are provided in the Appendix is provided in the Supplementary Materials. We consider the same strata for events from Cause 1 and censoring for a mathematical simplicity in Theorem 3.1. This avoids the abuse of complicated notations and subscripts. However, similarly to Kim et al. (2020), one can show the asymptotic results of Theorem 3.1 even when strata for models for Cause 1 The asymptotic variances of the proposed estimators for $and_{10j}(t)$ when using Kaplan-Meier estimates for censoring are provided in the Supplementary Materials.

4. Simulation

We conduct simulation studies using R package **adjSURVCI** (Khanal and Ahn, 2021). We consider two weight functions: covariate-dependent weight \mathbf{w}_{ijk}^{COX} (t) and covariate-independent weight \mathbf{w}_{ijk}^{KM} (t) = I ($C_{ijk} \quad X_{ijk} \wedge t$) $\mathbf{\Theta}_{C;j}$ (t)= $\mathbf{\Theta}_{C;j}$ (X_{ijk} $\wedge t$), where $\mathbf{\Theta}_{C;j}$ () is a Kaplan-Meier estimator for the survival probability of censoring for stratum j. We consider two competing risks with Cause 1 being the main event of interest and 2 strata. Similarly to Logan et al. (2011), we generate clustered competing risks data for Causes 1, 2, and censoring for stratum j using

 $F_{1j}(t j !; Z) = 1 [1 p(1 expf_{j} tg)]$

where MVN is the multivariate normal distribution. However, the middle 50% of the clusters contain 4 observations. For those clusters, we assume

The number of strata for censoring is 2 and $_0 = (2:5; 2:5; 3)^{|}$. Table 7 presents the other parameter values for the AFT model. With these values, it results in approximately 30% censoring, 40% Cause 1, and 30% Cause 2. Table 8 provides the simulation results. The proposed method with ψ_{ijk}^{COX} (t) has little bias and the coverage rates close to 95%. The estimates of the proposed method with \mathbf{w}_{ijk}^{KM} (t) are biased and their coverage rates are less than 95%. The proposed method with $\boldsymbol{w}_{ijk}^{\text{COX}}(t)$ is robust against mis-speci ed modeling of censoring under this limited setting.

5. Real data analysis

We apply our method to the data set of Pidala et al. (2014) to investigate the impact of donor-recipient HLA matching on chronic GVHD of acute lymphoblastic leukemia patients who received unrelated donor allogeneic hematopoietic cell transplantation, where death without experiencing chronic GVHD is a competing event. The variables considered in this application are GVHD prophylaxis (FK506 + (MTX or MMF or steroids) + other, FK506 + other, CsA + MTX + other, CsA + other(No MTX), Tcell depletion and Other); HLA matching (8=8, 7=8 and 6=8); year of transplant (1999 2002, 2003 2006 and 2007 2011); graft type (bone marrow and peripheral blood); in vivo T-cell depletion (no and yes) and total body irradiation (no and yes). The total sample size is 2200. Table 9 shows patient characteristics for the 2200 patients. There are 451 censored patients, 879 patients experienced chronic GVHD and 870 patients died without experiencing chronic GVHD.

First, we check the proportional hazard assumption for censoring by examining the coe cient of variable log(t) under the marginal PH model for each variable. Year of transplant does not satisfy the proportional hazard assumption with p-value < 0:001. Therefore, we stratify year of transplant for the proportional hazards model for censoring. We also include the other variables in Table 9 in modeling the censoring distribution. Next, we check the PSH assumption for each variable by examining the log(t) based on the proposed model. GVHD prophylaxis does coe cient of variable not satisfy the PSH assumption with p-value < 0:001. Hence, we stratify it for the PSH model for chronic GVHD. We also check a study center e ect using the score test of homogeneity (Commenges and Andersen, 1995) and it was signi cant with p-value < 0:001. The level of signi cance is set at 0.05. Then, we t four di erent strati ed PSH model as follows:

- Proposed method with \$\$\mu_{ijk}^{COX}\$ (t);
 Proposed method with \$\$\mu_{ijk}^{COX}\$ (t), but ignores clusters and instead treat the data as independent data;
- (3) Proposed method with \mathbf{w}_{iik}^{KM} (t).
- (4) Proposed method with \mathbf{v}_{ijk}^{KM} (t), but ignores clusters and instead treat the data as independent data;

Table 10 show the analysis results. The results for the models with \boldsymbol{w}

					√bo _{ijk} ^{COX} (t)			wb _{ijk} KM (t)	
Scenario		n	0	Bias	SE(SD)	СР	Bias	SE(SD)	СР
CDC	0.25	200	01	-0.003	0.089(0.090)	0.946	0.051	0.086(0.089)	0.894
			02	-0.001	0.356(0.356)	0.950	0.075	0.355(0.356)	0.944
			03	-0.015	0.209(0.211)	0.950	-0.050	0.207(0.213)	0.945
		400	01	-0.001	0.063(0.063)	0.945	0.054	0.061(0.062)	0.849
			02	0.003	0.252(0.252)	0.948	0.079	0.251(0.253)	0.939
			03	-0.007	0.146(0.147)	0.951	-0.043	0.146(0.148)	0.944
		800	01	0.000	0.044(0.044)	0.952	0.056	0.043(0.043)	0.732
			02	0.004	0.178(0.180)	0.947	0.081	0.178(0.180)	0.922
			03	-0.002	0.103(0.102)	0.950	-0.039	0.103(0.102)	0.939
	05	200	01	0 000	0 087(0 088)	0 943	0 111	0 079(0 082)	0 697
	0.0	200	01	-0.005	0 332(0 336)	0.942	0.140	0.328(0.334)	0.077
			02	-0.005	0.210(0.216)	0.742	-0.140	0.020(0.004) 0.200(0.210)	0.727
		400	03	0.010	0.210(0.210) 0.061(0.061)	0.940	0.100	0.056(0.056)	0.000
		400	01	0.001	0.001(0.001) 0.234(0.235)	0.750	0.114	0.000(0.000) 0.232(0.233)	0.404
			02	-0.003	0.234(0.233) 0.147(0.150)	0.740	-0.160	0.232(0.233) 0.1/8(0.152)	0.077
		800	03	0.007	0.147(0.130)	0.744	0.100	0.140(0.132)	0.027
		000	01	0.000	0.045(0.045)	0.751	0.114	0.040(0.040) 0.164(0.164)	0.170
			02	-0.003	0.103(0.103)	0.949	-0.152	0.104(0.104) 0.104(0.105)	0.000
			03	0.000	0.100(0.101)	0.717	0.107	0.101(0.100)	0.000
	1	200	01	0.002	0.085(0.085)	0.948	0.171	0.073(0.074)	0.357
			02	0.007	0.239(0.237)	0.951	0.203	0.229(0.230)	0.858
			03	-0.021	0.211(0.206)	0.958	-0.445	0.207(0.207)	0.421
		400	01	-0.001	0.060(0.059)	0.950	0.170	0.051(0.052)	0.094
			02	0.006	0.169(0.167)	0.951	0.205	0.162(0.162)	0.755
			03	-0.007	0.147(0.149)	0.948	-0.435	0.146(0.149)	0.134
		800	01	0.001	0.042(0.042)	0.951	0.173	0.036(0.037)	0.005
			02	0.001	0.119(0.120)	0.951	0.201	0.114(0.115)	0.580
			03	-0.003	0.103(0.103)	0.948	-0.431	0.103(0.103)	0.009
CIC	0.25	200	01	-0 004	0 074(0 076)	0 943	-0 004	0 074(0 077)	0 941
010	0.20	200	01	-0.003	0 367(0 370)	0.951	-0.002	0.367(0.371)	0.950
			02	-0.005	0 157(0 158)	0.948	-0.006	0 156(0 158)	0.947
		400	03	-0.002	0.052(0.053)	0.948	-0.002	0.052(0.053)	0.945
		100	01	0.002	0.259(0.259)	0.950	0.002	0.259(0.260)	0.949
			02	-0.002	0.110(0.111)	0.950	-0.004	0.110(0.111)	0.951
		800	03	0.000	0.037(0.037)	0.953	0.000	0.037(0.037)	0.954
		000	02	0.005	0 183(0 186)	0 944	0.005	0 183(0 186)	0.945
			02	-0.001	0.078(0.076)	0.954	-0.001	0.078(0.077)	0.953
			05	0.001	0.070(0.070)	01701	01001	01070(01077)	01700
	0.5	200	01	-0.004	0.070(0.072)	0.946	-0.004	0.070(0.072)	0.944
			02	-0.007	0.328(0.330)	0.947	-0.007	0.329(0.330)	0.948
			03	-0.006	0.151(0.154)	0.946	-0.007	0.151(0.156)	0.943
		400	01	-0.001	0.049(0.050)	0.946	-0.001	0.050(0.050)	0.945
			02	0.000	0.231(0.232)	0.946	0.000	0.232(0.233)	0.947
			03	-0.003	0.106(0.107)	0.950	-0.003	0.107(0.108)	0.947
		800	01	0.000	0.035(0.035)	0.951	0.000	0.035(0.035)	0.949
			02	0.002	0.163(0.163)	0.953	0.002	0.164(0.163)	0.953
			03	-0.001	0.075(0.075)	0.948	-0.002	0.075(0.075)	0.947
	1	200	01	-0.003	0.066(0.066)	0.948	-0.003	0.066(0.066)	0.946
		-	02	0.002	0.230(0.237)	0.939	0.002	0.231(0.239)	0.939
			02	-0.007	0.150(0.149)	0.952	-0.008	0.150(0.150)	0.950
		400	01	-0.002	0.047(0 ₁ 0,47)	0.946	-0.002	0.047(0.048)	0.942
			01	0.004	0.163(0.164)	0.945	0.004	0.164(0.167)	0.945
			02	-0.004	0.105(0.107)	0.946	-0.004	0.106(0.108)	0.944
		800	03	0.000	0.033(0.033)	0.952	0.000	0.033(0.033)	0.950
			01	-0.001	0.115(0.116)	0.946	-0.002	0.116(0.118)	0.947
			03	-0.001	0.074(0.075)	0.949	-0.001	0.075(0.076)	0.951

 Table 2.
 Simulation results for parameter estimation for Cause 1

						w _{ijk} (t)			wu _{ijk} (t)	
Scenario		n	t	Stratum	Bias	SE(SD)	CP	Bias	SE(SD)	CP
CDC	0.25	200	0.1	0	-0.007	0.126(0.128)	0.932	-0.001	0.124(0.127)	0.924
				1	-0.007	0.144(0.144)	0.940	-0.001	0.141(0.143)	0.929
			0.7	0	-0.011	0.190(0.190)	0.938	0.008	0.183(0.187)	0.921
				1	-0.012	0.209(0.209)	0.938	0.008	0.202(0.205)	0.924
		400	0.1	0	-0.005	0.088(0.090)	0.940	0.002	0.087(0.089)	0.929
				1	-0.005	0.101(0.103)	0.939	0.002	0.100(0.103)	0.929
			0.7	0	-0.008	0.133(0.135)	0.941	0.013	0.129(0.132)	0.924
				1	-0.008	0.146(0.149)	0.943	0.013	0.142(0.145)	0.930
		800	0.1	0	-0.003	0.062(0.063)	0.942	0.004	0.061(0.062)	0.933
				1	-0.003	0.071(0.072)	0.943	0.003	0.071(0.071)	0.936
			0.7	0	-0.005	0.093(0.094)	0.945	0.016	0.091(0.092)	0.928
				1	-0.005	0.103(0.104)	0.946	0.015	0.100(0.102)	0.931
	0.5	200	0.1	0	-0.001	0.064(0.067)	0.913	0.016	0.060(0.064)	0.865
				1	-0.002	0.084(0.087)	0.920	0.019	0.080(0.083)	0.880
			0.7	0	-0.004	0.145(0.150)	0.923	0.052	0.131(0.138)	0.852
				1	-0.003	0.178(0.184)	0.929	0.061	0.162(0.169)	0.857
		400	0.1	0	-0.001	0.046(0.047)	0.934	0.016	0.043(0.044)	0.881
				1	-0.002	0.060(0.061)	0.936	0.019	0.057(0.058)	0.890
			0.7	0	-0.005	0.102(0.103)	0.938	0.053	0.093(0.095)	0.851
				1	-0.005	0.125(0.127)	0.937	0.061	0.115(0.117)	0.858
		800	0.1	0	-0.001	0.032(0.033)	0.942	0.017	0.030(0.031)	0.870
				1	-0.001	0.042(0.043)	0.941	0.020	0.040(0.041)	0.880
			0.7	0	-0.003	0.072(0.073)	0.943	0.055	0.066(0.066)	0.817
				1	-0.004	0.089(0.090)	0.942	0.062	0.081(0.082)	0.834
	1	200	0.1	0	0.000	0.018(0.019)	0.913	0.014	0.015(0.015)	0.730
				1	0.000	0.030(0.030)	0.930	0.026	0.025(0.025)	0.715
			0.7	0	-0.001	0.088(0.088)	0.937	0.099	0.065(0.066)	0.592
				1	-0.001	0.136(0.136)	0.938	0.156	0.103(0.104)	0.598
		400	0.1	0	0.000	0.013(0.013)	0.938	0.014	0.010(0.011)	0.654
				1	-0.001	0.021(0.022)	0.938	0.025	0.017(0.018)	0.632
			0.7	0	-0.003	0.062(0.064)	0.938	0.098	0.046(0.048)	0.424
				1	-0.004	0.096(0.099)	0.938	0.155	0.073(0.075)	0.423
		800	0.1	0	0.000	0.009(0.0Td [(1)-2653(-0.931660	0.075))-1095(0.	423)]TJ
				1	0.000	0.015(0.015)	09480	0.026	0.142(0.122)	04382
			0.7	0	-0.001	0.0423				
				1	-0.001	0.017(0.067)	0.438	0.198	0.521(0.541)	01682

Table 3. Simulation results for cumulative baseline subdistribution hazard estimation at t = 0.1 and 0.7 $\frac{\sqrt{COX}}{\sqrt{COX}}$ (t) $\frac{\sqrt{COX}}{\sqrt{COX}}$ (t)

Table 4.	Simulation results for parameter estimation when ignoring clusters
	MCOX (+)

				√bo _{ijk} COX (t)	wb _{ijk} KM (t))	-
Scenario		n	0	SE(SD)	СР	SE(SD)	СР	-
CDC	0.25	200	01	0.083(0.090)	0.931	0.081(0.089)	0.874	-
			02	0.230(0.356)	0.796	0.230(0.356)	0.790	
			03	0.204(0.211)	0.947	0.201(0.213)	0.943	
		400	01	0.058(0.063)	0.930	0.057(0.062)	0.818	
			02	0.162(0.252)	0.792	0.162(0.253)	0.773	
			02	0 142(0 147)	0 944	0 141(0 148)	0.939	
		800	03	0.041(0.044)	0.932	0.040(0.043)	0.697	
		000	01	0.011(0.011) 0.114(0.180)	0.786	0.010(0.010) 0.114(0.180)	0.750	
			02	0.114(0.100) 0.100(0.102)	0.700	0.099(0.102)	0.730	
			03	0.100(0.102)	0.745	0.077(0.102)	0.752	
	0.5	200	01	0.084(0.088)	0.933	0.077(0.082)	0.675	
			02	0.232(0.336)	0.827	0.228(0.334)	0.776	
			03	0.208(0.216)	0.944	0.205(0.219)	0.881	
		400	01	0.059(0.061)	0.938	0.054(0.056)	0.441	
			01	0 163(0 235)	0.823	0 160(0 233)	0 739	
			02	0 145(0 150)	0 944	0 144(0 152)	0.817	
		800	03	0.041(0.043)	0.940	0.038(0.040)	0.017	
		000	01	0.041(0.045)	0.240	0.113(0.164)	0.173	
			02	0.113(0.103) 0.101(0.104)	0.002	0.113(0.104) 0.101(0.105)	0.002	
			03	0.101(0.104)	0.745	0.101(0.103)	0.070	
	1	200	01	0.085(0.085)	0.947	0.073(0.074)	0.356	
			02	0.232(0.237)	0.944	0.222(0.230)	0.848	
			02	0.211(0.206)	0.958	0.207(0.207)	0.422	
		400	03	0.060(0.059)	0.951	0.051(0.052)	0.092	
		100	01	0.163(0.167)	0.944	0.157(0.162)	0.736	
			02	0.100(0.107) 0.147(0.149)	0.950	0.145(0.149)	0.132	
		800	03	0.042(0.042)	0.950	0.036(0.037)	0.005	
		000	01	0.042(0.042) 0.115(0.120)	0.750	0.030(0.037) 0.110(0.115)	0.000	
			02	0.113(0.120) 0.103(0.103)	0.744	0.110(0.113) 0.102(0.103)	0.002	
			03	0.103(0.103)	0.747	0.102(0.103)	0.007	
CIC	0.25	200	01	0.067(0.076)	0.915	0.067(0.077)	0.913	
			02	0.225(0.370)	0.771	0.225(0.371)	0.771	
			03	0.154(0.158)	0.947	0.153(0.158)	0.946	
		400	01	0.047(0.053)	0.920	0.047(0.053)	0.918	
			02	0.158(0.259)	0.769	0.158(0.260)	0.770	
			03	0.108(0.111)	0.946	0.108(0.111)	0.946	
		800	01	0.033(0.037)	0.930	0.033(0.037)	0.929	
			02	0.111(0.186)	0.755	0.112(0.186)	0.759	
			02	0.076(0.076)	0.949	0.076(0.077)	0.948	
	0 5	000		0.0///0.070	0.000	0.04440.070	0.000	
	0.5	200	01	0.066(0.072)	0.929	0.066(0.072)	0.929	
			02	0.219(0.330)	0.806	0.220(0.330)	0.807	
			03	0.149(0.154)	0.945	0.150(0.156)	0.944	
		400	01	0.046(0.050)	0.929	0.046(0.050)	0.929	
			02	0.153(0.232)	0.806	0.154(0.233)	0.811	
			03	0.105(0.107)	0.948	0.105(0.108)	0.944	
		800	01	0.033(0.035)	0.934	0.033(0.035)	0.937	
			02	0.108(0.163)	0.803	0.109(0.163)	0.802	
			03	0.074(0.075)	0.9451	0.51 0.51		
				8091 Tf -27.	092 -12.	F31 7.9701 Tf 6.	17 -1.63	36 Td [((

					√bo _{ijk} COX (t)	wb _{ijk} KM (t)
Scenario		n	t	Stratum	SE(SD)	СР	SE(SD)	СР
CDC	0.25	200	0.1	0	0.103(0.128)	0.881	0.100(0.127)	0.870
			0.7	1	0.118(0.144)	0.887	0.115(0.143)	0.880
			0.7	1	0.173(0.209)	0.891	0.167(0.205)	0.877
		400	0.1	0	0.072(0.090)	0.880	0.071 (0.089)	0.871
			0.7	1	0.082(0.103)	0.878	0.081(0.103)	0.868
			0.7	0	0.110(0.135) 0.121(0.149)	0.891	0.106(0.132)	0.868
		800	0.1	0	0.050(0.063)	0.887	0.050(0.062)	0.876
				1	0.058(0.072)	0.886	0.057(0.071)	0.879
			0.7	0	0.077(0.094)	0.893	0.075(0.092)	0.871
				I	0.085(0.104)	0.890	0.083(0.102)	0.872
	0.5	200	0.1	0	0.054(0.067)	0.870	0.050(0.064)	0.819
				1	0.071(0.087)	0.882	0.067(0.083)	0.833
			0.7	0	0.125(0.150)	0.886	0.112(0.138)	0.806
		400	0.1	0	0.038(0.047)	0.889	0.036(0.044)	0.825
				1	0.050(0.061)	0.891	0.047(0.058)	0.830
			0.7	0	0.088(0.103)	0.898	0.079(0.095)	0.796
		800	0.1	0	0.108(0.127) 0.027(0.033)	0.899	0.098(0.117)	0.809
		000	0.1	1	0.035(0.043)	0.896	0.033(0.041)	0.818
			0.7	0	0.062(0.073)	0.897	0.056(0.066)	0.744
				1	0.076(0.090)	0.901	0.069(0.082)	0.763
	1	200	01	0	0 018(0 019)	0 914	0 014(0 015)	0 727
		200	0.1	1	0.030(0.030)	0.931	0.024(0.025)	0.711
			0.7	0	0.087(0.088)	0.936	0.064(0.066)	0.586
		400	0.1	1	0.135(0.136)	0.938	0.102(0.104)	0.594
		400	0.1	0	0.013(0.013) 0.021(0.021)	0.936	0.010(0.011)	0.646
			0.7	0	0.062(0.064)	0.935	0.045(0.048)	0.413
				1	0.096(0.099)	0.937	0.072(0.075)	0.420
		800	0.1	0	0.009(0.009)	0.946	0.007(0.007)	0.497
			0.7	0	0.013(0.013) 0.043(0.044)	0.947	0.033(0.032)	0.428
				1	0.067(0.067)	0.946	0.051(0.051)	0.164
010	0.05	200	0.1	0	0.074(0.100)	0.051	0.074(0.100)	0.040
CIC	0.25	200	0.1	0	0.074(0.100) 0.084(0.113)	0.851	0.074(0.100) 0.084(0.113)	0.849
			0.7	0	0.111(0.148)	0.860	0.111(0.148)	0.861
				1	0.120(0.161)	0.858	0.120(0.161)	0.858
		400	0.1	0	0.052(0.070)	0.850	0.052(0.070)	0.850
			0.7	0	0.059(0.079)	0.858	0.059(0.079)	0.858
			0.7	1	0.084(0.112)	0.864	0.084(0.112)	0.864
		800	0.1	0	0.037(0.049)	0.857	0.037(0.049)	0.859
			0.7	1	0.042(0.057)	0.854	0.042(0.057)	0.853
			0.7	1	0.055(0.072) 0.059(0.079)	0.864	0.055(0.072) 0.059(0.079)	0.864
					0.007(0.077)	0.001	0.007(0.077)	0.000
	0.5	200	0.1	0	0.043(0.056)	0.860	0.043(0.056)	0.858
			07	1	0.056(0.073)	0.866	0.056(0.073)	0.863
			0.7	1	0.117(0.148)	0.875	0.117(0.148)	0.873
		400	0.1	0	0.030(0.039)	0.873	0.030(0.039)	0.876
				1	0.040(0.051)	0.872	0.040(0.051)	0.875
			0.7	0	0.069(0.086)	0.881	0.069(0.086)	0.876
		800	0.1	0	0.083(0.104) 0.021(0.027)	0.880	0.083(0.104) 0.022(0.027)	0.879
				1	0.028(0.036)	0.873	0.028(0.036)	0.873
			0.7	0	0.049(0.060)	0.884	0.049(0.060)	0.885
				1	0.058(0.073)	0.884	0.058(0.073)	0.883
	1	200	0.1	0	0.015(0.016)	0.917	0.015(0.016)	0.919
		-		1	0.025(0.025)	0.928	0.025(0.026)	0.929
			0.7	0	0.069(0.071)	0.933	0.069(0.071)	0.932
		400	01	1	0.102(0.104)	0.944 0.034	0.102(0.104)	0.942 0.032
		400	U. I	1	0.018(0.011)	0.930	0.018(0.018)	0.933
			0.7	0	0.043 (0.050)	0.940	0.049(0.050)	0.938
		000	<u> </u>	1	0.072(0.075)	0.940	0.072(0.075)	0.937
		800	0.1	U 1	0.008(0.008) 0.012(0.012)	0.943	0.008(0.008) 0.012(0.012)	0.943
			0.7	0	0.035(0.035)	0.945	0.035(0.035)	0.944
				1	0.051(0.052)	0.943	0.051(0.052)	0.942

Table 5. Simulation results for cumulative baseline subdistribution hazard estimation at t = 0.1 and 0.7 when ignoring clusters

 Table 6.
 Simulation results for parameter estimates of Cause 1, when strata for Cause 1 and censoring models are di erent

		`	√osub _{ijk} COX (t)			√bø _{ijk} KM (t)	
n	0	Bias	SE(SD)	СР	Bias	SE(SD)	CP

 Table 8.
 Simulation results of parameter estimates for Cause 1 when censoring follows AFT model

	8/8	7/8	6/8	Total
Vear of transplant	0/0	//0	0/0	Total
	227	101	61	122
1999 - 2002	237	131	04	432
2003 - 2006	497	223	60	/80
2007 - 2011	702	259	27	988
Graft type				
Peripheral blood	759	297	65	1121
Bone marrow	677	316	86	1079
In vivo T cell depletion				
No	1087	400	92	1579
Yes	349	213	59	621
Total body irradiation				
No	166	69	4	239
Yes	1270	544	147	1961
GVHD prophylaxis				
FK506 + (MTX or MMF or steroids) + other	779	300	58	1137
FK506 + other	85	21	4	110
CsA + MTX + other	407	187	50	644
CsA + other(No MTX)	48	23	6	77
T-cell depletion	95	63	31	189
Other	22	10	2	.07 ⊿3

analysis
data
Real
10.:
Table

	usters	p-value		0.411	0.379	0.396		0.061	0.480	0.314		< 0.001	< 0.001		< 0.001	< 0.001		0.020	0.020
La KM Lik	ignoring clu	Estimate (SE)			0.068 (0.077)	-0.133 (0.157)			0.073 (0.103)	-0.106 (0.106)			-0.386 (0.076)			-0.526 (0.086)			0.282 (0.121)
	clusters	p-value		0.384	0.371	0.554		0.036	0.453	0.333		< 0.001	< 0.001		< 0.001	< 0.001		0.074	0.074
kur bik ik (t	accounting for	Estimate (SE)			0.068 (0.076)	-0.133 (0.224)			0.073 (0.098)	-0.106 (0.110)			-0.386 (0.097)			-0.526 (0.106)			0.282 (0.158)
÷	usters	p-value		0.413	0.380	0.399		0.053	0.474	0.297		< 0.001	< 0.001		< 0.001	< 0.001		0.021	0.021
UN COX	ignoring clu	Estimate (SE)			0.068 (0.078)	-0.133 (0.157)			0.074 (0.103)	-0.110 (0.106)			-0.387 (0.076)			-0.526 (0.086)			0.280 (0.121)
t	clusters	p-value		0.382	0.369	0.554		0.030	0.442	0.319		< 0.001	< 0.001		< 0.001	< 0.001		0.076	0.076
wacox (1	accounting for	Estimate (SE)		•	0.069 (0.077)	-0.133 (0.224)			0.075 (0.097)	-0.109 (0.110)			-0.387 (0.097)			-0.527 (0.106)			0.280 (0.158)
			HLA matching	8/8 (ref)	7/8	6/8	Year of transplant	1999 - 2002 (ref)	2003 - 2006	2007 - 2011	Graft type	Peripheral blood (ref)	Bone marrow	In vivo T cell depletion	No(ref)	Yes	Total body irradiation	No (ref)	Yes

SE is the standard error and * denotes the overall p-value.

6. Conclusion

We have studied when the number of strata is nite, but the number of clusters increases. Zhou et al. (2011) considered highly strati ed data which have a large number

Appendices

$$\begin{aligned} q_{ijk}^{(1)}(u) &= \lim_{n_{j} \downarrow 1} \quad \frac{1}{n_{j}} \frac{X^{n}}{\sum_{i^{0}=1}^{i^{0}j} \sum_{k^{0}=1}^{s=X_{i^{0}jk^{0}}} Z_{i^{0}jk^{0}} \left(Z_{i^{0}jk^{0}} - \frac{S_{COX;j}^{(1)}(0;s)}{S_{COX;j}^{(0)}(0;s)} \right) \\ &= W_{i^{0}jk^{0}}^{COX}(s) \frac{\exp(-\frac{1}{0}Z_{i^{0}jk^{0}})I(u-s)}{S_{Cj}^{(0)}(0;u)} dM_{i^{0}jk^{C0,9626}}^{1} + 4.469 + 1.495_{0}32 + 9.6321 + 6.9738 \text{ Tr} - 1.071 + 2.819 + 1.992 \text{ Td}} I(0)]TJ/F21 + 6.9738 \text{ Tr} - 2.694 + 1.992 \text{ Td} - 4.091 \text{ Td}} dV_{i^{0}jk^{0}} \left(S_{i^{0}jk^{0}} - S_$$

- Thomas H Scheike, Yanqing Sun, Mei-Jie Zhang, and Tina Kold Jensen. A semiparametric random e ects model for multivariate competing risks data. **Biometrika**, 97 (1):133{145, 2010.
- Brent R Logan, Mei-Jie Zhang, and John P Klein. Marginal models for clustered time-to-event data with competing risks using pseudovalues. **Biometrics**, 67(1):1{7, 2011.
- Ping K Ruan and Robert J Gray. Analyses of cumulative incidence functions via nonparametric multiple imputation. **Statistics in Medicine**, 27(27):5709{5724, 2008.
- Bingqing Zhou, Jason Fine, Aurelien Latouche, and Myriam Labopin. Competing risks regression for clustered data. **Biostatistics**, 13(3):371{383, 2012.
- Jason P Fine and Robert J Gray. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association

Supplementary Materials for Competing risks regression for clustered data with covariate-dependent censoring

Manoj Khanal^a, Soyoung Kim^{a,b} and Kwang Woo Ahn^{a,b}

^aDivision of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, 53226, Wisconsin, USA

^bCIBMTR, Medical College of Wisconsin Clinical Cancer Center, 9200 W. Wisconsin Avenue, Milwaukee, 53226, Wisconsin,USA

ARTICLE HISTORY Compiled March 19, 2023

ABSTRACT

We provide proofs for Theorems 1 to 3. We also provide the asymptotic variances of the proposed estimators for and $_{10j}(t)$ when using Kaplan-Meier estimates for censoring.

1. Supplementary Materials

1.1. Proof of Theorem 1

Using similar arguments as in Kim et al. (2020), we have

$$\begin{split} & \mathfrak{G}_{Cj}(t \neq Z_{ijk}) - \mathbf{G}_{Cj}(t \neq Z_{ijk}) \\ & = -\frac{\mathbf{G}_{Cj}(t \neq Z_{ijk})}{n_{j}} \sum_{u=0}^{Z} \sum_{i^{0}_{j}=1}^{n_{j}} \frac{\mathbf{f}_{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}=1}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}}^{\mathbf{f}_{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}=1}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}}^{\mathbf{f}_{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}=1}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}=1}^{\mathbf{f}_{i^{0}_{j}=1}^{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}=1}^{\mathbf{f}_{i^{0}_{j}=1}^{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}}^{\mathbf{f}_{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}}^{\mathbf{f}_{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} (t; 0; \mathbf{f}_{i^{0}_{j}}; \mathbf{f}_{i^{0}_{j}})}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \frac{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}}{\mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} (\mathbf{f}_{i^{0}_{j}}; \mathbf{f}_{i^{0}_{j}})} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}}} \mathbf{f}_{i^{0}_{j}}^{i^{0}_{j}} \mathbf{f}_{i^{0}_{j}}^{i^{0$$

where

$$h_{Cj}(t; u; Z) = e^{\int_{0}^{t} Z} \sum_{s=u}^{Z} \left(\sum_{s=u}^{t} Z - \frac{s_{Cj}^{(1)}(s; s)}{s_{Cj}^{(0)}(s; s)} \right) d_{C0j}(s):$$

CONTACT Kwang Woo Ahn. Email: kwooahn@mcw.edu

Using (1), we have

Hence,

$$\begin{split} \Psi \hat{v}_{ijk}^{COX}(t) & \Psi_{ijk}^{COX}(t) \\ &= \prod_{i} (C_{ijk} - T_{ijk} - t) \prod_{ijk} (X_{ijk} - t) \frac{G_{Cj}(t j Z_{ijk})}{G_{Cj}(X_{ijk} - j Z_{ijk})} \\ & \frac{1}{N_j} \frac{1}{N_j} \frac{1}{N_j} \frac{N_j}{N_j} \frac{N_j}{2} \frac{2}{N_j} \frac{\exp(-\frac{T}{0} Z_{ijk}) \prod_{ijk} (X_{ijk} - s - t)}{N_j} \\ & \frac{1}{N_j} \frac{1}{N_j} \frac{1}{N_j} \frac{1}{N_j} \frac{N_j}{N_j} \frac{N_j}{2} \frac{1}{N_j} \frac{1}{N$$

$$\begin{array}{l} U_{COX} \left(\begin{array}{c} 2 \\ 2 \end{array} \right) & 3 \\ = & \begin{array}{c} X^{n} & 4 \\ & ij \end{array} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i = \\ \end{array} & \begin{array}{c} X^{ij} & X^{ij} & X^{ij} & Z \\ i = \\ i \\ i = 1 \\ i = 1 \\ i = 1 \end{array} & \begin{array}{c} X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & Z \\ i \\ \end{array} & \begin{array}{c} X^{ij} & X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & X^{ij} & Z \\ i \\ X^{ij} & X^{ij} & X^{ij} & Z \\ \end{array} & \begin{array}{c} X^{ij} & X^{ij} & X^{ij} \\ X^{ij} & X^{ij} & X^{ij} \\ X^{ij} & X^{ij} & X^{ij} & X^{ij} \\ X^{ij} & X^{ij} & X^{ij} & X^{ij} \\ X^{ij} & X^{ij} & X^{ij} \\ X^{ij} & X^{ij} & X^{ij} \\ X^{ij} & X^{ij} \\ X^{ij} & X^{ij} & X^{ij} \\ X^{ij$$

Using (2), the second term of the last equation of (3) is asymptotically equivalent to $\label{eq:constraint}$

where

Since $_{i::}^{COX}$ and $_{i::}^{COX}$

where

¢(¹⁾

Plugging (6) into (5),

$$\mathcal{P}_{\overline{\mathbf{n}_{j}}}^{\mathbf{n}}^{\mathbf{n}}_{\mathbf{b}_{10j}}(\mathbf{t}) = {}_{10j}(\mathbf{t})$$

Using (9) and (11),

$$\mathcal{P}_{\overline{n_{j}}} \stackrel{n}{\overset{}{\overset{}}}_{10j}(t) \qquad {}_{10j}(t) \stackrel{O}{=} \frac{1}{\mathcal{P}_{\overline{n_{j}}}} \begin{pmatrix} \chi \\ \overset{}{\overset{}}_{i=1} \end{pmatrix} W_{ij:}^{(1)}(t) + W_{ij:}^{(2)}(t) + O_{P}(1); \qquad (12)$$

where

$$W_{ij:}^{(1)}(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \end{array} + \begin{array}{c} \cos x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \cos x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \\ \sin x \end{array} \right)^{j} f(t) = \int_{0}^{\infty} \left(\begin{array}{c} \sin x \end{array}$$

Consider the rst term of (13) and using (12),

Now consider the second term of (13) and using the functional delta method,

$$\begin{split} & \stackrel{\mathcal{P}}{\underset{n_{j}}{\prod}} f^{D}_{10j}(t) \exp(\begin{array}{c} b \\ Z_{0} \end{array}) \qquad \begin{array}{l} b_{10j}(t) \exp(\begin{array}{c} b \\ 0 \\ Z_{0} \end{array})g \\ &= \begin{array}{c} \stackrel{\mathcal{P}}{\underset{n_{j}}{\prod}} b_{10j}(t) f \exp(\begin{array}{c} b \\ Z_{0} \end{array}) \qquad \begin{array}{l} \exp(\begin{array}{c} b \\ 0 \\ Z_{0} \end{array})g \\ &= \begin{array}{c} \stackrel{\mathcal{P}}{\underset{n_{j}}{\prod}} b_{10j}(t) \exp(\begin{array}{c} b \\ Z_{0} \end{array})Z_{0}^{\dagger} f \exp 776 \text{ Tf } 6.398 \text{ -.} \end{split}$$

The variance can be estimated by

$$D_{\text{KM}}(t) = \frac{1}{n_j} \bigvee_{i=1}^{\mathcal{M}} D_{\text{KM};ij:}^{(1)}(t) + \mathcal{W}_{\text{KM};ij:}^{(2)}(t)^{O_2};$$

where

$$\mathfrak{M}_{KM;ij:}^{(1)} (t) = _{i} (\mathfrak{h}_{:::}^{KM} + \mathfrak{h}_{:::}^{KM})^{i} (/_{KM} (\mathfrak{h}^{KM}) = n) ^{1} \overset{Z}{}_{0}^{t} \frac{\mathfrak{S}_{KM;j}^{(1)} (\mathfrak{h}^{KM}; s)}{\mathfrak{S}_{KM;j}^{(0)} (\mathfrak{h}^{KM}; s)}^{!} \\ \mathfrak{M}_{KM;ij:}^{(2)} (t) = _{ij} \overset{\mathfrak{N}_{i}}{\overset{Z}{}_{1}} \frac{\mathcal{L}_{t}}{\mathfrak{h}_{ik}^{KM} (s) d\mathfrak{M}_{KM;k}^{1} (s)} \\ \mathfrak{M}_{KM;ij:}^{(2)} (t) = _{ij} \overset{\mathfrak{N}_{i}}{\overset{Q}{}_{k=1}} \frac{\mathfrak{L}_{t}}{\mathfrak{h}_{ik}^{KM} (\mathfrak{s}) d\mathfrak{M}_{KM;k}^{1} (\mathfrak{h}^{KM}; s)} \\ \mathfrak{M}_{KM:ij:}^{(2)} (t) = _{ij} \overset{\mathfrak{N}_{i}}{\mathfrak{h}_{k=1}} \frac{\mathfrak{L}_{t}}{\mathfrak{h}_{ik}^{KM} (\mathfrak{s}) d\mathfrak{M}_{KM;k}^{1} (\mathfrak{h}^{KM}; s)} \\ \mathfrak{M}_{KM:ij:}^{(2)} (t) = _{ij} \overset{\mathfrak{M}_{ij}}{\mathfrak{h}_{k=1}} \frac{\mathfrak{L}_{t}}{\mathfrak{h}_{ik}^{KM} (\mathfrak{s}) d\mathfrak{M}_{KM;k}^{1} (\mathfrak{h}^{KM}; s)} \\ \mathfrak{M}_{KM:ij}^{(2)} (\mathfrak{M}_{KM;k}^{2)} (\mathfrak{h}^{KM}; \mathfrak{h}^{K}; s) = \mathcal{H}_{ij} (\mathfrak{M}_{KM;k}^{2} (\mathfrak{h}^{K}; \mathfrak{h}^{K}; s) = \mathcal{H}_{ij} (\mathfrak{h}^{KM}; \mathfrak{h}^{K}; s) = \mathcal{H}_{ij} (\mathfrak{h}^{K}; s) = \mathcal{H}_{ij} (\mathfrak{h}$$