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SUMMARY

We examine the problem of specifying prior probabilities for all possible subset models

in the context of variable selection in normal linear models. A solution is proposed

that uses a



where � is a positive scalar parameter, and I is the n� n identity matrix.

In selecting variables, we are interested in considering the 2k possible models that can

be obtained from (1.1) by retaining various subsets of the last k columns of the matrix

X, and modifying the length of � accordingly. To be speci�c, let m be a subset of the

integers f0; : : : ; kg containing 0, and let km denote the number of elements of m. Thus

m identi�es a model with an intercept and a speci�c choice of km� 1 predictor variables.

With M denoting the model space consisting of all 2k models under consideration, we

can write these as

Y = Xm �(m) + �; m 2 M ; (1.3)

where Xm is the n� km predictor matrix under model m, and �(m) is the corresponding

coe�cient vector. Choosing one of the models in (1.3) is the goal of variable selection

methods. The literature contains many techniques advanced for this purpose. See, for

example, Lindh0 TD7Tj
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score prediction for each. Such predictions could, if appropriate, take guidance from some

model, perhaps even outsideM, that was arrived at using past information. Similarly, a

soil scientist may possess su�cient information and expertise to make prior predictions

on crop yield based on yields and covariates from the past, and a physician may be able to

make individualized predictions of quantitative responses of patients in a study. In each

case, it is desirable to incorporate the prior information and expertise into the current

analysis. To do this we require the investigator to make a prior prediction of the value

of the response n-vector Y , taking into account all case-speci�c covariate information

available. We denote this prediction by �, a �xed vector regardless of the model under

consideration. In eliciting priors, it has been recognized by many (Madigan, Gavrin and

Raftery(1995) and the references there) that it is useful to focus attention on observable

quantities as opposed to parameters. Such a focus becomes practically necessary in the

case of model selection, where parameters abound.

Before proposing a prior distribution on M, we briey describe how L&I specify

priors for (�(m); �) for each m 2 M by using � and a positive scalar c which quanti�es

the importance attached to the prior prediction � relative to the information in the data.

Employing the normal-gamma conjugate family under each model, they take

�(m)j�; � � Nokm(�
(m); �Tm) ; (2.1)

with

�(m) = (X 0

mXm)
�1X 0

m� ; (2.2)



Y j�; � � Non(�; �I) (2.5)

where  = c=(1 + c). On the other hand, viewed through a model m and the prior (2.1)

with (2.3),

Y j�; � � Non(Xm�
(m); �(I � (1� )Pm)) (2.6)

where Pm = Xm(X
0
mXm)

�1X 0
m is the



p(m) =
[m�

0(I � Pm)� + (� � 2)�1�m(n� km)]
�n=2

e�km=2
P

m2M [m�0(I � Pm)� + (� � 2)�1�m(n� km)]
�n=2 e�km=2

: (2.10)

It is convenient here to make the choices

�m = l(n� km)
�1; l > 0 (2.11)

and

m = b�1=km ; 0 � b; � � 1 : (2.12)

We observe that, with � = 0 the prior probabilities for each �xed km are equal. That

is, we get uniform distributions over models of equal size. As � ! 1, p(m) can be

dominated by �0(I � Pm)� depending on b, � and l. In practice, the experimenter may

choose � 2 C(Xm�) for somem� due to the context of the experiment. Such a speci�cation

results in �0(I �Pm)� = 0 whenever � 2 C(Xm). This means relative probabilities for all

models whose column spaces contain � depend only on � and �. Using the choices of �

and � mentioned above, we have the following properties of the p(m)'s for such models :

(i) All models with the same number of predictors will get the same prior probability; (ii)

For two models m and m0, km0 > km implies p(m0) < p(m), thus giving larger probability

to smaller models. We also note that with this choice of � and �, the prior mean and

variance of � both decrease as km increases. Thus larger models lead to smaller prior

expected precision. On both counts, these choices of � and � favor smaller models when

their column spaces contain �.

If we make the choice � = 0, it is clear from (2.10) that the prior probabilities are

free of � and b. Moreover, by the de�nition of l following (2.10), they are also free of �

and l. Table 1 contains lists of these, a row for each choice of k up to 7. Each probability

is followed, in parentheses, by the number of models over which it is spread evenly.

3 Examples

Before presenting two examples to illustrate the priors of the previous section, we note

that the speci�cations for �, �, l, b and � can serve two purposes. Via (2.11) and (2.12),

these generate a prior distribution on the model space M.



Table 1: Prior Probabilities (Number of Models), � = 0

km
k 1 2 3 4 5 6 7 8

1 0.622(1) 0.377(1)
2 0.387(1) 0.470(2) 0.143(1)
3 0.241(1) 0.438(3) 0.267(3) 0.054(1)
4 0.150(1) 0.364(4) 0.330(6) 0.132(4) 0.020(1)
5 0.093(1) 0.285(5) 0.340(10) 0.210(10) 0.065(5) 0.008(1)
6 0.058(1) 0.210(6) 0.315(15) 0.260(20) 0.120(15) 0.030(6) 0.003(1)
7 0.036(1) 0.154(7) 0.273(21) 0.280(35) 0.175(35) 0.063(21) 0.014(7) 0.001(1)

Together, a complete prior speci�cation for the variable selection problem is achieved and,

given the data y, one can compute posterior probabilities in a straightforward manner as

p(mjy) / p(m)� (n� km)
��=2 bkm=2 �

h
l(n� km)

�1 + (y � Pm�)
0(I � (1� m)Pm)(y � Pm�)

i�n+�

2 : (3.1)

The choice � = 0, b = 1 makes this expression free of the prior prediction �, reducing it

to

p(mjy) / e�km=2(n� km)
��=2

h
l(n� km)

�1 + y0(I � Pm)y
i�n+�

2 : (3.2)

Formally setting l = � = 0 now yields

p(mjy) / e�km=2 [y0(I � Pm)y]
�n=2

: (3.3)

This last expression is just (2.8) written with the realized data y in place of the imaginary

data Y0. In other words, setting � = l = � = 0 and b = 1 yields the posterior probabilities

computed using the S&S priors for (�(m); �) and a uniform distribution on M. Such

probabilities are, of course, in complete agreement with the local Bayes factors advanced

in S&S.

Example 1 Wypij and Liu (1994) describe an experiment conducted to study personal

exposure to ozone and how it relates to prevalent ozone concentrations and activities of

individuals. Twenty three children were monitored for daytime exposure by means of

a light-weight passive ozone sampler, newly developed by Koutrakis et al.(1993). Each

subject kept a diary of activities from 8 A.M. to 8 P.M. Entries from these were aggregated

and recorded on formatted sheets by �eld technicians. Although the experiment involved

other aspects such as validating measurements made by the new device, we describe here
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Table 2: Model Probabilities,



of continous ozone concentration measurements made at an environmental data collection

station within a reasonable distance (about 6 km) of the experimental sites. Since the

activity diaries contained hourly information, and the continuous measurements could

be averaged correspondingly, it is possible to make a prior guess at the reponse variable

values. In particular, let X6(k) denote the fraction of time spent indoors at home during

the kth hour. This could be determined from the individual diaries. con
iTj76
/T9 1 Tflues.



Table 3: Model Probabilities, Hald Data with � = :602; b = :166

Model �1 �2 �3 �4
Intercept .15 (.00) .00 (.00) .00 (.00) .00 (.00)

x2



prior belief that the response variable does not have a regression relationship with any of

the four predictors. These probabilities are also close to the noninformative speci�cation

obtainable from the row k = 4 of Table 1. Now it is known from previous analyses

appearing in the literature that the model with predictors X1 and X2 is quite adequate

for these data. Table 3 reects this in the model's substantially increased posterior

probability in the �1 column. Also, as we move to the column with prior prediction

�2 made with a belief in precisely this model, the prior probability attached to it has

increased to 0.25. Moreover, the posterior probability is even higher. As we look at the

results under predictions �3 and �4, we see a decrease in the probabilities of this model,

although it still remains more probable than any other. The prior probability of the

model with X1; X4 shows an appreciable increase under �3. However, the information in

the data cause a shift away from this model, as reected in the posterior.

Other calculations were carried out to see the behavior of these probabilities when

the degree of belief in the prior predictions is increased. As expected, there is an increase

in the posterior probability of the model X1; X2 under the prior prediction �2 as b and

� increase. However, even under the extreme choice of unity for each, the posterior

probability is 0.352. As b and � increase, the prior probability of this model increases to

a maximum of 0.342 and the ratio of posterior to prior probabilities decreases. Overall,

the numerical experience here seeA4(s)-31000
/T7j
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proposed in this article and in L&I show a desirable behavior a4(s)-31000he prior parameters are

varied.

4 Discussion

Incorporating prior information into variable selection is not an easy task. The

available methods describe priors for the regression parameters in the various models

under consideration, often concentrating on the noninformative case. See, for example,

Mitchell and Beauchamp (1988) and the references therein. Here we have addressed the

issue of specifying prior probabilities for the models. These are surmised from the prior

prediction, �



cases with the aid of a randomizing program. This approach does not average over an

imaginary replicate of the real experiment but uses elicited imaginary data in a Bayesian

updating of uniform model probabilities. Yet, it is similar to this article in its focus on

observable quantities. The article of Mitchell and Beauchamp (1988) contains an implicit

speci�cation of prior model probabilities in its equation (2.7). However, they recommend

that the parameters of the prior be gleaned from the data. They also avoid computation

of posterior probabilities, instead providing graphical summaries to assess the importance

of various covariates.

The calculations of the posterior probabilities in Section 3 above employed the pre-

dictiv




