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Summary

In the last two decades a large number of papers have been published on the topic of anal-

ysis of multiple endpoints in clinical trials. We provide a comprehensive review of this

vast literature focusing on the statistical aspects. We make comparisons between compet-

ing procedures, present some new developments and extensions/modifications of existing

procedures, make recommendations for use and note some open problems for research.

Keywords: Multiple comparisons; multiple tests; one-sided multivariate tests; Bonferroni

test; chi-bar squared distribution; multivariate normal distribution; clinical decision rules;

global tests; endpoint specific tests; closure method; resampling; adjusted p-values; family-

wise error rate.
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1. Introduction

Most clinical trials are conducted to compare a treatment group with a control group

on multiple endpoints. Often, the treatment is expected to have a positive effect on all

endpoints. Depending on the nature of the disease the endpoints may be grouped into

primary and secondary types. We mainly focus on the case where all endpoints are primary

and provide a comprehensive review of the vast literature and some new results focusing on

the statistical aspects. Shorter review articles by Chi (1998), Huque and Sankoh (1997),

Sankoh, Huque and Dubey (1997), Sankoh, Huque, Russell and D’Agostino (1999) and

Zhang, Quan, Ng and Stepanavage (1997) also discuss some clinical aspects with examples.
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The corresponding correlation matrix will be denoted by R with elements

ρk` = Corr(xijk, xij`) =
σk`√
σkkσ``

(1 ≤ k 6= ` ≤ m).

In the heteroscedastic case, Σ1 and Σ2 are not assumed to be equal. The elements of Σ
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3.1 Homoscedastic Case

3.1.1 Exact Likelihood Ratio (LR) Tests

It is well-known that because Hotelling’s T 2 test is designed for the omnibus (two-sided)

alternative H2 : δ 6= 0, it lacks power for the one-sided alternative H1 of (2.1) (Meier

1975, O’Brien 1984). Kudô (1963) derived an exact LR test when Σ is known for the one-

sample problem which can be easily extended to the two-sample problem as follows. Let δ̂

be the projection of x1· − x2· in the positive orthant with respect to the distance function

d(u, v) = (u − v)′Σ−1(u − v
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Stein-type two-stage test that is free of Σ. It also has other desirable properties such as



7

The null distribution of g(u) is the χ2 distribution with symmetric binomial probability

weights given by

PrH0{g(u) > c} =
m∑

k=0

{(
m

k

)
2−mPr

(
χ2

k > c
)}





9

We see that both the OLS and GLS statistics are standardized weighted sums of the

individual t-statistics for the m endpoints. The OLS statistic uses equal weights, while the

GLS statistic uses unequal weights determined by the sample correlation matrix R̂. If some

endpoint is highly correlated with the others then the GLS statistic gives a correspondingly

lower weight to its t-statistic.

The exact small sample null distributions of tOLS and tGLS are not known. O’Brien (1984)

proposed a t-distribution with n1 + n2 −2m d.f. as an approximation. For large sample sizes

the standard normal (z) distribution may be used as an approximation. The t-approximation

is exact for m = 1, but is conservative for m > 1; on the other hand, the z-approximation is

liberal. The convergence of tGLS to the standard normal distribution is slower than that of

tOLS because of the use of the estimated correlation matrix R̂ both in the calculation of λ̂GLS

and in the estimate of SD(λ̂GLS). Also, the simulation study by Reitmeir and and Wassmer

(1996) has shown that the powers of the OLS and GLS tests are comparable when used

to test subset hypotheses in closed testing procedures (see Section 4.1). Finally, the linear

combination j ′R̂
−1

used by the GLS test can have some negative weights, which can lead

to anomolous results; this problem does not occur with the OLS test. For all these reasons,

the OLS test is recommended.

Finally we note that Tang, Gnecco and Pocock (1993) have generalized the GLS test

statistic for an arbitrary ray alternative µ1−µ2 = λ(β1, . . . , βm)′, where the vector (β1, . . . , βm)′

with all positive elements is specified. However, if the observed mean difference x1· − x2· is

not close to this ray then the power of the test may be adversely affected. Since the vector

(β1, . . . , βm)′ is in general difficult to specify, Tang, Gnecco and Pocock suggest following the

maxmin approach (maximize the minimum power over all ray alternatives) of Abelson and

Tukey (1963).

3.1.4 Läuter’s Exact Tests

Läuter (1996) proposed a class of test statistics for the hypotheses (2.1) having the

property that they are exactly t-distributed with n1 + n2 − 2 d.f. under H0. Recall that

xi· = (xi·1, xi·2, . . . , xi·m)′ denotes the vector of sample means for the ith group (i = 1, 2) and
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let

x·· =
n1x1· + n2x2·

n1 + n2

= (x··1, x··2, . . . , x··m)′

denote the vector of overall sample means. Define the total cross-products matrix by

V =
2∑

i=1

ni∑
j=1

(xij − x··)(xij − x··)
′ = (n1 + n2 − 2)Σ̂ +

2∑
i=1

ni(xi· − x··)(xi· − xi· −
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Because the total pooled standard deviation overestimates the true standard deviation since
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of Hotelling’s T 2 test by eliminating outcomes with negative differences on all endpoints, but

it’s rejection region is not monotone.

3.2 Heteroscedastic Case

3.2.1 Approximate Likelihood Ratio (ALR) Test

In Tamhane and Logan (2001) we proposed to extend the ALR test to the heteroscedastic

case as follows. Let

Ωi =
1

ni

Σi (i = 1, 2)Ω = Ω1 + Ω2 and Σ =
n1n2

n1 + n2

Ω.

The sample estimates of these matrices are denoted by putting carets over them; thus Ω̂i =

(1/ni)Σ̂i, Ω̂ = Ω̂1 + Ω̂2 and

Σ̂ =
n1n2

n1 + n2

Ω̂.

The transformation matrix A in (3.1) is chosen such that A′A = Σ̂
−1

and AΣ̂A′ = I.

We suggested the same F approximation (3.4) to the null distribution of g(u) in the

heteroscedastic case, but with the following Welch-Satterthwaite estimated d.f. ν derived by

Yao (1965) for the multivariate Behrens-Fisher problem:

1

ν
=

1

(d′Ω̂
−1

d)2

(d′Ω̂
−1

Ω̂1Ω̂
−1

d)2

n1 − 1
+

(d′Ω̂
−1

Ω̂2Ω̂
−1

d)2

n2 − 1

 ,

where d = (x1· − x2·). Note that Yao derived this formula (also using the moment matching

method) to approximate the distribution of

u′u =
(

n1n2

n1 + n2

)
(x1· − x2·)

′Σ̂
−1

(x1· − x2·)

by Hotelling’s T 2
m,ν =

(
νm

ν−m+1

)
Fm,ν−m+1 distribution with an estimated ν. We simply ex-

tended Yao’s approximation to the F distribution. Our simulations for selected values of

m, n1 = n2 = n, Σ1 and Σ2 showed that this approximation is quite accurate for controlling

the type I error probability at the nominal level α = 0.05 for m = 4 if n ≥ 20 and for m = 8

if n ≥ 30.
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3.2.2 Ordinary Least Squares (OLS) and Generalized Least Squares (GLS) Tests

Pocock, Geller and Tsiatis (1987) extended O’Brien’s GLS test to the heteroscedastic case

as follows. Initially assume that Σ1 and Σ2 are known. Then the statistic for comparing the

treatment with the control on the kth endpoint is

zk =
x1·k − x2·k√

σ1,kk/n1 + σ2,kk/n2

(1 ≤ k ≤ m). (3.11)

Let z = (z1, z2, . . . , zm)′ and R̄ = (n1R1 + n2R2)/(n1 + n2). In analogy with (3.9), Pocock

et al. proposed the statistic

zGLS =
j ′R̄

−1
z√

j ′R̄
−1

j
.

However, this is just an ad-hoc extension. Furthermore, the covariance (correlation) matrix

of z is not R̄, but Γ = {γk`} with elements

γk` =
σ1,k`/n1 + σ2,k`/n2
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for i = 1, 2. Note that ξ1k − ξ2k = λ for all k. Also note that Γ1 and Γ2 are not correlation

matrices, and Γ = Γ1 + Γ2 if n1 = n2.

The hypotheses (3.5) can be tested by using a univariate regression framework as in (3.6):

yijk = ξk +
λ

2
Iijk + εijk (i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m), (3.12)

where ξk = (ξ1k + ξ2k)/2, Iijk = +1 if i = 1 and −1 if i = 2, and εij = (εij1, εij2, . . . , εijm)′

are independently distributed as N(0, Γi). Using the same methods as those used in the

homoscedastic case, the OLS and GLS statistics are as given below; for derivations, see

Logan (2001).

Assuming that Σ1 and Σ2 are known, it is straightforward to show that

λ̂OLS =
j ′(y1· − y2·)

m
= y1·· − y2·· and SD(λ̂OLS) =

√√√√j ′
(

Γ1

n1

+
Γ2

n2

)
j.

Hence the OLS statistic with the Γi replaced by their sample estimates Γ̂i equals

tOLS =
j ′(y1· − y2·)√

j ′(Γ̂1/n1 + Γ̂2/n2)j
, (3.13)

where the elements of Γ̂i are given by

γ̂i,k` =
σ̂i,k`√

(σ̂1,kk + σ̂2,kk)(σ̂1,`` + σ̂2,``)
.

For n1 = n2 = n, the above OLS statistic reduces to

tOLS =
j ′t√
j ′Γ̂j

,

where t is a vector o15 11.955 Tf 8.053 r963 Tf 13.035 3.913 Td[(b)]TJrra21
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Next we derive the GLS test. Assuming that Σ1 and Σ2 are known, it can be shown that

λ̂GLS =
4j ′ (Γ1/n1 + Γ2/n2)−1 (y1· − y2·)

j ′[(I − B)Γ−1
1 /n1 + (I + B)Γ−1

2 /n2]j

and

SD(λ̂GLS) =
4
√

j ′ (Γ1/n1 + Γ2/n2)−1 j

j ′[(I − B)Γ−1
1 /n1 + (I + B)Γ−1

2 /n2]j
, 4B) 1

2
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The problems associated with the Bonferroni test have been well-documented; see, e.g.,

O’Brien (1984), Pocock, Geller and Tsiatis (1987): (i) it is overly conservative especially if m

is large or the endpoints are highly correlated, and (ii) it is powerful if only one endpoint has

a large treatment effect, but not if most or all endpoints have moderate treatment effects.

It should be noted that the Bonferroni test is a union-intersection (UI) test when H0

is viewed as H0 =
⋂m

k=1 H0k. Therefore rejection of H0 implies rejection of any H0k with

pk < α/m; this implied multiple test procedure for testing null hypotheses on the individual

endpoints controls the FWE at level α (Hochberg and Tamhane 1987, pp. 28 -29).

An improvement on the Bonferroni test was proposed by Simes (1986). To apply the

Simes test first order the p-values: p(1) ≥ p(2) ≥ · · · ≥ p(m) and denote the corresponding

hypotheses by H0(1), H0(2), . . . , H0(m). Then reject H0 if

p(k) <
(m − k + 1)α

m
for some k = 1, 2, . . . , m. (3.17)

Simes proved that this is an α-level test under the assumption that the p-values are inde-0k1m: (3.17)

p
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global test of each null hypothesis H0K for K ⊆ M . Any of the global tests discussed in the

previous section can be used for this purpose.

4.2 Normal Theory Based Tests

It is conceivable to test the null hypotheses H0k of (2.2) on the individual endpoints

using the test statistics tk from (3.8) in the homoscedastic case and from (3.14) in the het-

eroscedastic case. To control the FWE at level α, we would need the upper α critical point

of max1≤k≤m tk under the overall null hypothesis H0 in each case. However, the joint dis-

tribution of (t1, t2, . . . , tm) is not multivariate t even in the homoscedastic case because the

standard deviations
√

σ̂kk used to standardize the tk statistics are different though correlated

for k = 1, 2, . . . , m. Furthermore these correlations (as well as those between the numerators

of the tk statistics) are unknown being the correlations between the corresponding end-

points. Therefore the standard Dunnett-type (1955) test or its stepwise versions (Dunnett

and Tamhane 1991, 1992) cannot be applied to test the hypotheses H0k.

4.3 Procedures Based on Adjusted p-Values

Let pk be the p-value for testing H0k as discussed in Section 3.3 and let Pk be the

corresponding r.v. This p-value is not adjusted for multiplicity of tests on all H0k. A

way to control the FWE at level α is to find multiplicity adjusted p-values (see Dunnett and

Tamhane 1991, 1992 and Wright 1992), denoted by p̃k, and reject H0k if p̃k < α (1 ≤ k ≤ m).

The adjusted p-values corresponding to a single-step test procedure (see Hochberg and

Tamhane 1987, Ch. 2 ) are given by

p̃k = PrH0

(
min

1≤`≤m
P` ≤ pk

)
(1 ≤ k ≤ m). (4.1)

The joint distribution of (P1, P2, . . . , Pm) is unknown because of the unknown correlations

among the endpoints. Therefore an approximation is often needed. The simplest such

approximation is the Bonferroni adjustment (corresponding to the Bonferroni test) given by

p̃k = mpk (1 ≤ k ≤ m).

Various sharpened versions of the Bonferroni adjusted p-values are available based on the

S̆idák (1968) inequality and its modifications. The S̆idák adjustment assumes that the P`’s
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are independent and is given by

p̃k = 1 − (1 − pk)m (1 ≤ k ≤ m).

If the P`’s are positively dependent then this adjustment is conservative. Armitage and

Parmar (1986) gave the following ad- hoc approximation to the adjusted p-values that takes

into account the correlations between the endpoints:

p̃k = 1 − (1 − pk)mf

(1 ≤ k ≤ m),

where f is an empirically determined function of the ρk`’s. Dubey (1985) suggested using a

different function fk = 1−ρk for each k, where ρk is the average of the correlations of the kth

endpoint with the others. However, it is readily seen from the definition (4.1) of the adjusted

p-value that f must be a symmetric function of all correlations. Therefore ρk in Dubey’s

formula should be replaced by ρ, namely, the average of all ρk`’s. Notice that if all ρk` = 0

then we get the S̆idák adjustment and if all ρk` = 1 then p̃k = pk, i.e., there is no adjustment.

Tukey, Ciminera and Heyse (1985) suggested using f = 1/2, i.e., p̃k = 1 − (1 − pk)
√

m,

which assumes that the average correlation is 1/2. An analytic approximation to p̃k for

jointly normally distributed endpoints was proposed by James (1991). Finally, Westfall and

Young’s (1989,1993) resampling method, which is distribution-free and implicitly takes the

correlations between the endpoints into account can always be applied to estimate the p̃k.

For multivariate binary endpoints, a bootstrap method was given by Westfall and Young

(1989) which was further extended to many other multiple testing problem in their 1993

book. Chen (1998) proposed using the generalized estimating equation (GEE) approach to

estimate the unknown correlations of binary endpoints to find the adjusted p-values.

Another approach to sharpen the Bonferroni adjustment is to use a stepwise procedure

for testing. The adjusted p-values for a step-down test procedure are given by

p̃(m) = PrH0

(
min

1≤`≤m
P` ≤ p(m)

)
and

p̃(k) = max
[
p̃(k+1), PrH0

(
min

1≤`≤k
P` ≤ p(k)

)]
for k = 1, . . . , m − 1. (4.2)

Conservative approximations to the above adjusted p-values can be obtained by using the

Bonferroni inequality and are given by

p̃(m) = mp(m) and p̃(k) = max
[
p̃(k+1), kp(k)

]
(1 ≤ k ≤ m − 1).
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These approximations correspond to Holm’s (1979) step-down test procedure, which rejects

H0(k) iff p(`) < α/` for ` = k, k + 1, . . . , m. This procedure can be derived by using the

Bonferroni test (3.16) to test subset null hypotheses in the closure method.

Hommel (1988) derived a stepwise procedure by using the Simes test (3.17) to test subset

null hypotheses in the closure method. Hochberg (1988) offered a slightly conservative but

a much simpler procedure. It is of step-up type in that it is the exact opposite of Holm’s

step-down procedure in terms of sequence of testing. The adjusted p-values for the Hochberg

procedure are given by

p̃(1) = p(1) and p̃(k) = min
[
p̃(k−1), kp(k)

]
(2 ≤ k ≤ m).

Hochberg’s procedure accepts H0(k) iff p(`) ≥ α/` for ` = 1, 2, . . . , k. Troendle (1996) gave a

bootstrap-based permutational step-up procedure.

4.4 A Hybrid Method Combining Global and Endpoint-Specific Tests

As we have seen, there are two main approaches to identify the significant endpoints: (i)

adjusting the p-values of individual endpoints, and (ii) using the closure method that employs

one of the global tests to test subset null hypotheses. The first approach is more powerful

when only a few endpoints have positive treatment effects, while the second approach is more

powerful when all or most of the endpoints have an effect. A test procedure with a more

uniform power performance can be obtained by combining these two approaches along the

lines of Hothorn’s (1999) Tmax testing principle.

In Logan and Tamhane (2001) we gave a closed testing procedure by combining two

tests for testing each intersection hypothesis: (i) the Bonferroni pmin test and (ii) O’Brien’s

OLS test. According to this latter hybrid method, the adjusted p-value for any intersection

hypothesis H0K =
⋂

k∈K H0k is defined as

p̃K = PrH0

{
min

(
min
k∈K

Pk, PK,OLS

)
≤ min

(
min
k∈K

pk, pK,OLS

)}
, (4.3)

where, as before, the lower case p’s denote the unadjusted observed p-values (e.g., pk is the

p-value for H0k and pK,OLS is the p-value for H0K using the OLS test) and the upper case P ’s

denote the corresponding r.v.’s. In Logan (2001) a third test was added, namely the ALR
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test. In a closed testing procedure, a hypothesis H0K is rejected at level α iff all hypotheses

H0L for L ⊃ K are rejected at level α and p̃K < α. In pratice, the p̃K defined in (4.3) need

to be estimated by bootstrap resampling. C language programs for this purpose for both

the homoscedastic as well as the heteroscedastic case are posted on the first author’s home

page (http://users.iems.northwestern.edu/∼ajit).
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configurations at which the type I error probability is maximized (= α) can be shown to be

of the type δk = 0 for some k and δ` → ∞ for ` 6= k. Cappizi and Zhang (1996) argued

that the resulting MIN test is overly conservative. If the null hypothesis is restricted to

H0 :
⋂m

k=1(δk = 0) as in (2.1) then a much less conservative test is obtained. Snappin (1987)
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for assessing the efficacy of a treatment under an intersection null hypothesis framework. The

MIN test is useful for dealing with a union null hypothesis. Often, protocols for drug approval

specify decision rules based on a combination of union and intersection null hypotheses. Many

examples of such decision rules are given in Chi (1998, 2000). In this section we present two

common types of clinical decision rules, give some examples, and discuss how formulating

these decision rules as a combination of union and intersection null hypotheses can lead to

FWE controlling procedures.

A typical decision rule leads to several paths for finding a significant treatment effect. For

example, given three endpoints (e.g., one primary and two secondary), one might conclude

effectiveness if either δ1 > 0 or (δ2 > 0 and δ3 > 0), i.e., if the primary endpoint shows an

effect or both secondary endpoints show an effect. As another example, given four endpoints,

two primary and two secondary, a possible decision rule might be to conclude effectiveness

if at least one primary endpoint and at least one secondary endpoint is significant, i.e., if

(δ1 > 0 or δ2 > 0) and (δ3 > 0 or δ4 > 0).

In each of the above cases, the decision rule corresponds to an alternative hypothesis,

from which an appropriate null hypothesis can be constructed by taking the complement.

Let H0i : δi ≤ 0 and H1i : δi > 0 for each endpoint i. Then the alternative hypothesis for

the first example is

H1 : H11

⋃
(H12

⋂
H13),

and the null hypothesis is

H0 : H01

⋂
(H02

⋃
H03) = (H01

⋂
H02)

⋃
(H01

⋂
H03).

Then applying the IU principle, we can test each intersection null hypothesis at level α and

conclude that the treatment is effective if both intersection null hypotheses are rejected.

Similarly for the second case, the alternative hypothesis is

H1 : (H11

⋃
H12)

⋂
(H13

⋃
H14),

and the null hypothesis is

H0 : (H01

⋂
H02)

⋃
(H03

⋂
H04).
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Again applying the IU principle, we can test each intersection null hypothesis at level α

and conclude effectiveness of the treatment if both intersection null hypotheses are rejected.

Neuhäuser, Steinijans and Bretz (1999) gave an example of this method using the Simes test
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Again using the IU principle, the resulting method is to test each equivalency hypothesis

at level α and to test the intersection hypothesis at level α as well. If all hypotheses are

rejected then conclude that the treatment is effective at level α.

As demonstrated above, test procedures can be constructed for desired clinical decision

rules which control the error rate at a pre-specifiTJ -1agfuc11.95103l‹
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