
A Complex fMRI Activation Model

With a Temporally Varying Phase

Daniel B. Rowe1,2

Department of Biophysics1 and Division of Biostatistics2

Division of Biostatistics



A Complex fMRI Activation Model

With a Temporally Varying Phase

Daniel B. Rowe1∗ and Brent R. Logan2

Department of Biophysics1 and Division of Biostatistics2

Medical College of Wisconsin

Milwaukee, WI USA

Abstract

Recently Rowe and Logan (2004) introduced a complex fMRI activation model in

which multiple regressors were allowed, hypothesis tests were formulated in terms of

contrasts, and the phase was directly modeled as a fixed unknown quantity which







where here vec(·) is used to denote an n dimensional vector whose tth element is given by its
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The maximum likelihood estimates under the constrained null hypothesis H0 : Cβ = 0

are similarly derived in the appendix and given by
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Ψ = Iq+1 − (X ′X)−1C ′[C(X ′X)−1C ′]−1C , (2.4)

where Ã1 and Ã2 are diagonal matrices with cos θ̃t and sin θ̃t as the tth diagonal element. The

restricted regression coefficients can also be shown to be equivalent to the magnitude-only

model because the multiplicative factor Ψ is identical in both cases.

2.2 Activation Statistics

The likelihood ratio statistic in Equation A.3 with some algebra can be written as
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Note that since
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where r is the full row rank of C. Otherwise, one might use the Ricean distribution [4, 8] to

derive the proper distribution of the F statistic. In either case, the estimates of β and the

likelihood ratio test depend only on the magnitude data.

Note from (2.6) that the maximum likelihood estimate of σ2 from the dynamic phase

complex model is inconsistent, since it can be shown as follows that its expected value does

not converge in probability or tend to its populaton value as the sample size tends to infinity
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An unbiased estimate of the variance can be obtained by simply using the unbiased estimate

of the variance from the magnitude-only model.

3 Conclusions

A generalization of the constant phase complex activation fMRI model of Rowe and Logan

(2004) was developed, where the phase angle is allowed to vary at each time point. It is

shown that the estimated regression coefficients and the likelihood ratio F statistic for this

dynamic phase complex fMRI model are equivalent to those in the usual magnitude-only

model. It is also seen that the maximum likelihood estimate of the variance in this model

is not consistent, but that a consistent variance estimate is obtained by simply using the

magnitude-only unbiased variance estimate. Therefore, inference on task-related magnitude

activation which is equivalent to that of the magnitude-only model can be derived directly

from the dynamic phase complex model.

5



A Generalized Likelihood Ratio Test

A.1 Complex Model with θt



Unrestricted MLE’s

Maximizing this likelihood with respect to the parameters is the same as maximizing the

logarithm of the likelihood with respect to the parameters and yields
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