
Some SAS macros for BUGS data

mailto:rsparapa@mcw.edu
http://www.mcw.edu/PCOR/Education/SASMacros.htm
http://www.mcw.edu/PCOR/Education/SASMacros.htm


statistics for discrete variables with PROB= or continuous variables with MEAN= and PREC= to include
in the data �le, by default, or the init �le, if the INIT= option is speci�ed. Here’s a code snippet:

%_lexport(data=mta, file=mta.txt, init=mta.in, var=med beh com age,

close=0, initclose=0, center=age, prob=med beh com);

%_sexport(data=mta, append=mta.txt, initappend=mta.in,

var=pscale0-pscale3 tscale0-tscale3, prob=pscale0-pscale3 tscale0-tscale3);

After generating posterior samples with BUGS, we want to create SAS datasets from our CODA
�les. Here’s a code snippet:

*select device and graphics file name;

goptions device=psl gaccess=gsasfile;

filename gsasfile ’chains.ps’;

*import CODA files and generate univariate statistics;

*NOT recommended: for comparison and completeness only;

*one chain at a time: chain 1;

%coda2sas(out=post1, infile=mta.ind, chain=mta1.out, stats=1);

*one chain at a time: chain 2;

%coda2sas(out=post2, infile=mta.ind, chain=mta2.out, stats=1, gsfmode=append);

data post;

set post1 post2;

run;

The CODA2SAS macro was originally written with BUGS in mind. It can process CODA �les, but
doesn’t handle multiple chains automatically. You have to import each of the chains manually. Set
INFILE= to the name of your index �le and CHAIN= to the name of your chain �le. So, I imported
the �rst chain into the SAS dataset post1. This SAS dataset contains three variables c_1-c_3

which correspond to the monitored array c[] where c[1] was translated as c_1, etc. But �rst,
I set my graphics output �le with a FILENAME GSASFILE statement and my graphics device with
a GOPTIONS DEVICE= statement. This is necessary with a summary request (STATS=1); statistics
and kernel density plots with histograms are generated. Without FILENAME/GOPTIONS statements,
the plots will be displayed on your graphics display device. However, if you choose a device that
is a graphics �le type supporting multiple images (like PostScript or PDF), then a graphics �le is
generated. If you want more graphics output appended to the same graphics �le in a subsequent
request, specify GSFMODE=APPEND. If you choose a device that is a graphics �le type that supports
only single images (like Encapsulated PS or JPEG), then you need to specify TYPE=. For example,
if you selected the JPEG device type and speci�ed TYPE=jpg, then the following graphics �les are
generated: c_1.jpg, c_2.jpg and c_3.jpg.

*select device and graphics file name;

2



goptions device=psl gaccess=gsasfile;

filename gsasfile ’chains.ps’;

*import CODA files and generate univariate statistics;

*this is recommended the way;

*all chains at once;

%_decoda(out=post3, infile=mta.ind, chains=2, var=c, mu0=1);

Next, I read in both chains with the _DECODA macro. Name your index �le either NAME.ind,
NAMEIndex.txt or NAME.ind.txt and each of your chains NAME#.out, NAME#.txt or NAME#.out.txt

respectively, where # is the number of your chains (1-2 in this example). If you follow this naming
convention, then an unlimited number of chains are supported by specifying only INFILE= for
the index �le and CHAINS= for the number of chains. If the chain �les follow some other naming
convention, then you can specify each of them manually as CHAIN1= up to CHAIN10=. The INFILE=

and OUT= parameters are required as well as either CHAINS= or CHAIN1=, etc. The posterior samples
from both chains are contained in the SAS dataset post3.

The same CODA2SAS comments apply to _DECODA with respect to GFSMODE= and TYPE= (although
the syntax is the same for TYPE=, if the variable of interest is a monitored array, stick with CODA2SAS).
Although STATS= is still accepted, VAR= is the new recommended name of the option which is more
SAS-ish. If one or more SAS variable names contained in the SAS dataset created is/are provided as
arguments via VAR=, then only those SAS variables are summarized. If you want all SAS variables
summarized, then you specify that the SAS way as VAR=_all_ instead of STATS=1. And, note that
the syntax has changed. Instead of VAR=c_1-c_3, you specify VAR=c. This is more intuitive since
that was the name of the monitored array, c[]. But, this requires the introduction of the SAS
variable OBS into the OUT= SAS dataset that represents the element of the array, i.e. 1-3. If the
monitored variable is not an array, then OBS=0. In addition, more summaries are available. Tests
and tables for location are performed and the default location of 0 can be changed with MU0=. If
you specify AUTOCORR=1 or set NLAG= to something other than 25, auto-correlations are generated



*transform data so that each record contains all 3 variables;

proc transpose data=post3 out=post prefix=c;

where 1<=obs<=3;

by chain iter;

id obs;

var c;

run;

*produce simultaneous confidence intervals;

%bayesintervals(data=post, vars=c1-c3, tail=U);

Lastly, I used the SAS macro BAYESINTERVALS by RD Wol�nger which is available at http:

//ftp.sas.com/samples/A56648. It constructs simultaneous intervals of the posterior for c1-c3.
Also available at the same URL is BAYESTESTS by PH Westfall which is for Bayesian multiple
hypothesis testing (BAYESTESTS requires an ESTIMATE macro which you can construct by hand or
which can be created by MAKEGLMSTATS by RD Tobias which is also provided).

There are four other SAS macros that you might �nd useful: _DEBUGS, SAS2CODA, _LIMPORT and
_CEXPORT. _DEBUGS is similar to _DECODA except that it only provides the summaries, it does not
read CODA �les so you have to specify DATA=. Also, _DEBUGS allows you to create a subset of the
data with OUT= and THIN= and/or WHERE=. SAS2CODA reads a SAS dataset and creates CODA �les.
_LIMPORT creates a SAS dataset from a \list" �le with two required options, OUT= for the new SAS
dataset and INFILE= for the \list" �le. However, importing can be tricky so a temporary SAS/IML
program (which you can name with FILE=) is created and run automatically. If the importing fails,
then you should be able to make corrections to the program and run it manually. _CEXPORT (with
similar syntax to _LEXPORT) reads a SAS dataset and creates a Comma Separated Values (CSV)

http://ftp.sas.com/samples/A56648
http://ftp.sas.com/samples/A56648

