TECHNICAL REPORT # 58 APRIL 2012

Design resampling for interim sample size recalculation

Sergey Tarima, Peng He, Tao Wang, Aniko Szabo Division of Biostatistics, Medical College of Wisconsin

Abstract

Internal pilot designs allow re-estimation of the sample size at the interim analysis using available information on nuisance parameters. In general, this a ects the Type I and II error rates. We propose a method based on resampling the whole design at the interim analysis, starting with sample size recalculation at the observed interim analysis values of nuisance parameters, and nishing with the deision to accept or reject the null hypothesis. This internal resampling is performed under both the null and under the alternative hypotheses allowing the estimation of the bias of the type I error and power. Finally, the bias corrected error rates are used in the originasample size calculation procedure to obtain an updated sample size. We repore the proposed resampling approach under a set of simulationcenarios and compare it with several others previously published internal pilot designs.

KEYWORDS: Internal Pilot; Sample Size; Power Calculation;Hypothesis Testing; Study Design.

1 Introduction

Ethical, nancial, and recruitment constraints prevent researchers from enrolling arbitrarily many patients for a study to achieve statistically significant results. Pilot studies are used to provide information on parameters needed to determine an appropriate sample size for a largeomormatory

for the one samplet-test,

$$D_{1t;IPN}$$
 (;; __0; _1; n_1; n_max) (2 D_2);

is an alternative to $D_{1t},$ which does not use $^{(0)}$ but depends onn_1 and n_{max} . Its power function is

$$P(jD_{1t;IPN}) = Pr T_{v(;; 0; 1;^{h})} > k(v)j; D_{1t;IPN};$$
(2)

where ^ depends on , $n_1, \, n_{max}$ and possibly . In this manuscript we assume that ^ is independent of , that is ^ = ^ .

A naive internal pilot-based sample size recalculation for two sample t-test will be denoted by $D_{2t;IPN}$. This design was rst analyzed by Wittes and Brittain [9]. We also consider the internal pilot desigr $D_{2t;IPS}$ suggested by Stein [8], which slightly modi es the functional form of the two-sample t-statistic, whereas $D_{2t;IPN}$ uses the classical two samplestatistic for T_v .

Internal sample size recalculation makes the nal samplezsi a random variable, which makes the distribution of the test statistic T_{ν} and therefore the critical value of the test di cult to calculate. Exact control of the type I error is achieved byD $_{2t;IPS}$, but this is rather an exception than a rule for internal pilot designs. In general, the true type I errorrate is rarely controlled,

$$E (D_{2t;IPN} (;; 0; 1; n_1; n_{max}) j H_0) = a(; j D_{2t;IPN}) G :$$

The desired power is not controlled in either Stein's or the aive internal pilot designs,

E
$$(D(;; 0; 1; n_1; n_{max}) jH_1) = 1$$
 b $(; jD) \in 1$:

Sample size recalculation via resampling

We propose a new approach to sample size re-estimation after internal pilot that maintains both the type I and type II error rates. This approach is applicable to any internal pilot design.

Key idea: For a design D 2 D₂ we nd $_{new}$ and $_{new}$ to control the desired type I error and power,

$$E (D(_{new};_{new};_{0};_{1};n_{1};n_{max})jH_{0}) =$$

and

$$E (D(_{new};_{new};_{0};_{1};n_{1};n_{max})jH_{1}) = 1$$

This de nition leads to a fully de ned internal pilot procedure $D^{a}(;;_{0};_{1};n_{1};n_{max})$, since all the details about sample size re-estimation, natypothesis testing, etc are already de ned in D.

Implementation: At the interim analysis we estimate ^and perform the following resampling procedure withM iterations. For eachi = 1; ...; M, we generate $Y_1^{(i)}$; ...; $Y_{n_1}^{(i)}$ from f_Y (yj $_0$; ^), estimate $v_i \ 2 \ [n_1; n_{max}]$ based on thesen observations, generate additional (n_1) observations $Y_{n_1+1}^{(i)}$; ...; $Y_{v_i}^{(i)}$ from f_Y (yj $_0$; ^), and calculate $T_{v_i}^{(i)}$ on this ith sample. We add the subscript i to highlight dependence on iteration. The estimated type I reor rate is

$$a(; jD) = \frac{1}{M} \frac{X^{M}}{I_{i=1}} I T_{v_{i}}^{(i)} > k_{i} \in ;$$

where k_i is the critical value for an originally assumed distribution of $T_{v_i}^{(i)}$. On the logit scale (logit(x) = ln (x=(1 x))) the bias-corrected _{new} can be expressed as

$$logit(_{new}) = logit(_) [logit(a) logit(_)]$$

or

$$_{\text{new}} = \frac{{}^{2} (1 \quad \texttt{A})}{(1 \quad)^{2} \texttt{A} + {}^{2} (1 \quad \texttt{A})}:$$
(3)

Then, we perform a similar resampling procedure to nd _{new}. For i = 1; ...; M, we generate $Y_1^{(i)}$; ...; $Y_{n_1}^{(i)}$ from f_Y (yj₁; ^), estimate v_i 2 [n₁; n_{max}] on thesen₁ observations using _{new} and in the sample size formula, generate additional (v_i n₁) observations $Y_{n_1+1}^{(i)}$; ...; $Y_{v_i}^{(i)}$ from f_Y (yj₁; ^), and calculate $T_{v_i}^{(i)}$ on this ith sample. The estimated power

1
$$\hat{b}(_{new}; jD) = \frac{1}{M} \frac{X^{M}}{_{i=1}} I T_{v_{i}}^{(i)} > k_{i} \in 1$$

leads to the bias-corrected value

$$_{\text{new}} = \frac{\begin{array}{ccc} 2 & 1 & b \\ (1 &)^{2}b + \begin{array}{c} 2 & 1 & b \\ \end{array}}{(1 &)^{2}b + \begin{array}{c} 2 & 1 & b \\ \end{array}}$$

 $Design\,D_{1t;IPN}$ (; ; __0; _1;n_1;n_{max}) does not formally depend on and uses the internally estimated

^ =

	D _{1t}	D _{1t;IPN}	D ^a _{1t;IPN}			
	Type I error					
1.6	0.0492	0.0643	0.0573			
2	0.0500	0.0612	0.0513			
3	0.0495	0.0553	0.0473			
3.5	0.0494	0.0526	0.0473			
		Power				
1.6	0.8177	0.8091	0.8367			
2	0.8086	0.7841	0.8216			
3	0.8040	0.7601	0.8001			
3.5	0.8043	0.7517	0.7943			
	EN (SD)					
1.6	23	22.73(9.33)	26.86(12.22)			
2	34	33.89(14.80)	40.93(18.01)			
3	73	73.17(33.29)	86.68(38.06)			
3.5	99	98.53(45.05)	115.89(51.21)			

Table 1: Monte-Carlo Type I error, Power, and Sample Sizes00; 000 simulations; one samplet-test designs, $n_1 = 10$, $n_{max} = 300$.

	D _{1t}	D _{1t;IPN}	D ^a _{1t;IPN}			
	Type I error					
0.6	0.0501	0.0523	0.0515			
1	0.0515	0.0727	0.0682			
2	0.0487	0.0685	0.0519			
3	0.0503	0.0589	0.0448			
3.5	0.0504	0.0574	0.0458			
		Power				
0.6	0.8985	0.9387	0.9335			
1	0.8030	0.8327	0.8596			
2	0.8076	0.7319	0.7897			
3	0.8033	0.7057	0.7663			
3.5	0.8034	0.6953	0.7560			
		EN (SD)				
0.6	6	6.00(1.59)	6.18(2.29)			
1	10	10.56(5.39)	13.22(8.51)			
2	34	33.88(22.24)	46.87(30.06)			
3	73	73.30(49.34)	97.85(61.65)			
3.5	99	97.79(64.78)	127.84(76.90)			

Table 2: Monte-Carlo Type I error, Power, and Sample Sizes00; 000 simulations; one samplet-test designs,n₁ = 5, n_{max} = 300.

and

$$Y_{11}; ...; Y_{n_{11}1}; ...; Y_{v_11}; ... N(_2 + ; _1^2);$$

where $n_{10},\,n_{11},\,v_0$ and v_1 satisfy

$$\frac{n_{10}}{n_{10} + n_{11}} = \frac{n_{10}}{n_{10}}$$

Table 4: Monte-Carlo Type I error, Power, and Sample Sizes00; 000 simulations; two samplet-test designs; $n_1 = 10$ (5 per group); xed allocation, r = 0.5

1	D _{2t}	D _{2t;IPS}	D _{2t;IPN}	D _{2t;IPNR}	D ^a _{2t;IPN}		
	Type I error						
1	0.0507	0.0508	0.0636	0.0579	0.0526		
1.5	0.0496	0.0503	0.0546	0.0537	0.0467		
2	0.0499	0.0499	0.0510	0.0509	0.0469		
2.5	0.0504	0.0496	0.0515	0.0515	0.0491		
			Power				
1	0.8081	0.8140	0.8401	0.8446	0.8213		
1.5	0.8093	0.8077	0.8261	0.8259	0.7995		
2	0.8010	0.8030	0.8184	0.8183	0.7883		
2.5							

t-distribution. However random allocation of subjects to grups leads to a di erent distribution. Since only the noncentrality parameter dependens on v_1 and v_2 , the distribution under H_0 does not change, but unde H_1 it becomes a mixture with

$$P(jT_{v}j > k jv \quad 2; \ _{1}; \ _{0}; \ _{3}) = \frac{X^{v}}{v_{1}=0} \frac{v!}{v_{1}!v_{2}!} \ _{3}^{v_{1}} (1 \ _{3})^{v_{2}} P(jT_{v}j > k jv \ 2; ! \ _{2}(v_{1};v_{2})) :$$
(9)

Moreover, the test statistic is not de ned if $min(v_1; v_2)$ 1 and has to be extended to these possible situations. For example, at = 1 or $v_2 = 1$ one can estimate the pooled standard deviation on one sample ponfor the case $v_1 = v_2 = 0$ one can set $T_v = 0$. Thus, even a xed sample size calculation faces substantial complications in deriving the distribution of the two sample t-test statistic under H₁.

In practice, the random aspect of the allocation is usuallyginored in the sample size estimation formulas and the formula for a xeallocation is used instead. Fixed allocation sample size calculation besato two number312(d)-339.35b31(.97

1	3	D _{2tr}	D _{2tr;IP N}	D _{2tr;IPNR}	D ^a _{2tr;IPN}	
		Type I error				
0.5	1	0.0480	0.0560	0.0502	0.0562	
0.5	1.5	0.0500	0.0540	0.0535	0.0506	
0.5	2	0.0499	0.0520	0.0520	0.0509	
0.25	1	0.0508	0.0555	0.0529	0.0553	
0.25	1.5	0.0497	0.0517	0.0516	0.0497	
0.25	2	0.0502	0.0519	0.0519	0.0508	
			Powe	er		
0.5	1	0.8455	0.8543	0.9028	0.8070	
0.5	1.5	0.8369	0.8444	0.8454	0.8181	
0.5	2	0.8247	0.8384	0.8385	0.8116	
0.25	1	0.8419	0.8669	0.8834	0.8264	
0.25	1.5	0.8431	0.8515	0.8516	0.8235	
0.25	2	0.8296	0.8429	0.8429	0.8145	
			EN (S	D)		
0.5	1	38.64(7.50)	41.12(16.36)	46.69(12.96)	36.78(16.54)	
0.5	1.5	80.85(10.73)	90.51(36.48)	90.68(36.23)	84.99(33.60)	
0.5	2	136.99(13.84)	158.68(62.09)	158.69(62.08)	147.03(5)6 55	
0.25	1	50.08(9.89)	58.99(28.36)	61.11(26.50)	54.06(29.26)	
0.25	1.5	109.18(14.39)	128.22(59.05)	128.26(58.97)	120.27(5)877	
0.25	2	184.04(18.60)	222.00(95.56)	222.00(95.56)	206.66(9)5 59	

Table 5: Monte-Carlo Type I error, Power, and Sample Sizes00; 000 simulations; two samplet-test designs;n₁ = 20; random allocation

Measurements of prostate-specic antigen (PSA) levels areaded used for screening and diagnosing prostate cancer. PSA levels areaded to be associated with measures of disease aggressiveness such ansortustage as well as demographic characteristics predictive of screengi behavior such as race/ethnicity, marital status, etc. A (hypothetical) investigator in Atlanta, GA wishes to conduct a study to evaluate whether the e ect of Back versus White race on PSA levels is the same for localized versesgionally or distantly extended tumors. In practice he or she would turn of the SEER cancer registry, as we will for the source of data, but for thesake of the example let's assume that the information of interest is not available in the registry. In fact, PSA levels were not available in SEER untirecently.

The specic goal of the study is to test the interaction e ect of race (White vs Black) and tumor stage (localized vs others) on InP(SA) values controlling for the e ect of marital status (married vs others) and ethnicity (Hispanic vs others).

We use the linear regression model

 $ln(PSA_i) = _0 + _1 W_i + _2 L_i + _3 W_i L_i + _4 M_i + _5 H_i + _i; (10)$

where W_i , L_i , M_i , and H_i are, respectively, indicators of White race, localized tumor, married status, and Hispanic ethnicity of theith subject. The random noise _i is assumed to follow a normal model with the zero mean and a nite unknown variance ². We formulate the research question about the interaction via H_0 : ₃ = 0 and wish to design a study that would have 80% power to detect a 1.5-fold di erence in the race e ect amonghe localized versus non-localized tumors, corresponding to₈ = ln(1:5).

To calculate the study sample size we use the formula prop**dstey** Hsieh et al [6]. If X represents the predictor of interest and Z stands the other predictors, then the sample size required to detect an e extribute a partial regression coe cient of with power 100(1) % at a two-sided signi cance

		Estimate	Std.Error	t value	p value
Interce	ot (^_)	5.4036	0.7208	7.497	< 0.0001
White	(^ ₁)	-1.2507	0.6519	-1.918	0.058
Localiz	ed (^ ₂)	-1.4274	0.4916	-2.904	0.004
Hispanic $\binom{4}{4}$		0.1849	0.5394	0.343	0.732
Married $\binom{5}{5}$		-0.0928	0.2122	-0.437	0.662
White Lo	calized $\binom{1}{3}$	1.4046	0.6822	2.059	0.042

Table 6: Linear regression on internal pilot data $n_1 = 100$.

To simulate the conduct of the study we extracted a sample of 18/2 proT432(c)3.56312(t)174(h52 Tf 1 0 0 1 128.4 539.64 3.)-2.26432]TJ -371.04 -14.4 Td a.26463

	Estimate	Std.Error	t value	p value
Intercept ([^] ₀)	4.8725	0.1923	25.333	< 0.0001
White (^ ₁)	-0.1577	0.1267	-1.245	0.213
Localized $\binom{1}{2}$	-0.4670	0.0989	-4.721	< 0.0001
Hispanic $\binom{4}{4}$	-0.0148	0.1706	-0.086	0.931
Married $\binom{5}{5}$	-0.1396	0.0445	-3.136	0.001

Table 7: Regression model for the total sample = 1837.