Microbiology & Immunology PhD Program at the 91ɫƵ

Message from the Director

Michelle Riehle, PhD
Assistant Professor of Microbiology & Immunology
Co-Director, Graduate Program in Microbiology & Immunology
mriehle@mcw.edu
(414) 955-8592

Vera Tarakanova, PhD
Professor of Microbiology & Immunology
Co-Director, Graduate Program in Microbiology & Immunology
vera@mcw.edu
(414) 955-7480
Microbiology & Immunology
About the Program
Mission of the Graduate Program in Microbiology & Immunology
The Graduate Program in Microbiology & Immunology (M&I) seeks to teach and train the next generation of research scientists in the molecular and cellular biology of bacterial pathogens, virus/host interactions, the innate and adaptive immune responses, animal and cellular model systems of infection and immunity, the microbiome, and the molecular mechanisms of gene expression, signal transduction, cell proliferation and cancer biology. It is the goal of the faculty and students to utilize classic and cutting-edge methodologies and technologies to conduct interdisciplinary research that will solve problems that are of significant biomedical importance.
Objectives of the Graduate Program in M&I
Through participation in a variety of departmental activities, M&I graduate students receive a broad education and training base that encompasses various aspects of biomedical science including those centered in the fields of bacteriology, immunology, virology, molecular biology, microbe-host interactions, genetics/gene expression and cancer biology. Our students develop essential technical skills and/or capabilities that allow them to conduct independent research, and effectively communicate scientific accomplishments in both written and oral forms. In general, M&I faculty seek to promote accomplishment of these objectives by providing a stimulating work and learning environment in which scientific curiosity is encouraged, scientific questions of significance are investigated, rigorous experimental approaches to problems are designed and executed, data is critically interpreted, and sound and cogent concepts are developed. The M&I Graduate Program assesses accomplishment of these objectives through several mechanisms including didactic course requirements, required annual research in progress (RIP) scientific presentations, semi-annual meetings with dissertation committee members coupled with submission of mentor summary statements, and dissertation-specific qualifying and defense examinations. The ultimate goal of the M&I Graduate Program is to produce well-rounded scientists that possess the necessary maturity, experience, and knowledge base to become independent leaders in the biomedical sciences within academia, industry, government, or other health-related career venues. These goals are consistent with the mission of the 91ɫƵ Graduate School and of the 91ɫƵ as a whole.
Curriculum
Curriculum details to come...
Course Summary
25-210 Principals in Laboratory Animal Science - 1 credit
A one-credit hour course surveying the issues fundamental to the successful use and care of animals in biomedical research. Students will gain knowledge of an array of core topics in laboratory animal science, including: understanding and navigating ethical and regulatory frameworks in which animal research occurs; basic biology and care of common laboratory species; managing rodent breeding colonies; contemporary issues in laboratory rodent genetics; important sources of non-experimental variables in animals research, including nutrition, microbial status, and pain; strategies for minimizing pain and distress in animal subjects; and basic techniques in laboratory rodent handling and restraint.
25-230 Current Topics in Microbiology and Immunology - 3 credits
This advanced course consists of introductory lectures on a selected topic followed by in-depth discussions of original research articles on topics such as bacterial invasion, virulence factors, immune evasion, virus-host interactions, T-cell functions, and viral regulatory proteins.
25-234 Cellular and Molecular Immunology - 3 credits
This course is an introduction to the experimental basis of immunology through readings from texts and current immunological journals. Topics covered include the cellular basis of the immune response, antigens, antibodies, and molecular basis for generation of immunologic diversity, and regulation of the immune response.
25-236 Cellular Microbiology - 3 credits
Cellular Microbiology is designed for students who are interested in contemporary concepts of cellular microbiology and microbial/viral pathogenesis. We will emphasize host/pathogen relationships and illustrate how the study of bacteria and viruses has provided insight into the molecular and cell biology of many eukaryotic processes. This is by no means a classical microbiology course or a classical cell biology course, and does not provide a survey of microorganisms. Rather, students will gain an appreciation of the basic properties of bacterial and viral pathogens, the processes leading to acute and chronic infections, the strategies that these agents utilize to enter and traffic through cells and exploit host cell processes for regulated gene expression, and technical approaches to pathogen study. Faculty will present formal lectures and engage students in numerous paper presentations/discussions. Students will be expected to acquire substantial background information in out-of-class readings.
25-251 Advanced Molecular Genetics - 3 credits
The goal of the course is to introduce students to current concepts in cancer biology, explore original research articles that form the basis of our current understanding of cancer, and provide students with experience in the critical evaluation of original cancer research. The course will consist of introductory sessions to place the course in context, followed by in-depth critical analysis and discussion of research articles relating to the topic being addressed. The introductory lectures within each unit will provide background information and establish a framework for the discussion of the research articles. Chapters from Weinberg's "The Biology of Cancer" or reviews will augment the readings. Following an introduction to a topic by each instructor, the topic will be explored by discussion of original research articles that have contributed to our understanding of that topic. Papers will be posted on D2L as PDF files. Each student is expected to have read and studied assigned articles in depth prior to class and to participate actively in meaningful discussions. For each paper discussion session, students will be placed into teams with assigned responsibilities for setting up the background and hypotheses behind the papers, the experimental approaches and findings, and the discussion of what has or should be done to extend the work presented. The discussion sessions will require active student participation. In sum, the lectures and discussion sessions will provide students with a contemporary understanding of the fundamental biological processes involved in the initiation and progression of cancer. Moreover, the students will become familiar with the most important questions in cancer research today and the experimental approaches that can be brought to bear on these questions. Prerequisites: There are no formal prerequisites, although students will be expected to have a firm understanding of molecular and cell biology, classical and molecular genetics, signaling, and techniques commonly used in these disciplines.
25-259 Mucosal Immunity - 1 credit
Gastrointestinal diseases are among the most common and least understood human health problems. Intestinal epithelial cells act as a dynamic interface between the external and internal environments and are polarized into an apical and basolateral domain. The primary functions of these cells are to maintain barrier integrity via tight-junctions with neighboring cells and function in absorption and secretion. Epithelial cell polarity is reflected by distinct protein localization. Those in the apical compartment are specialized for nutrient absorption and ion secretion. Basolateral localized proteins are specialized for maintenance of the electrochemical gradient and adherence to neighboring cells and the subjacent extracellular matrix. Intestinal epithelial cells are key participants in the mucosal immune response and maintain chronic physiologic inflammation characteristic of the intestinal mucosa. In response to pathogen infection or inflammatory stimuli, epithelial cells upregulate the expression of proinflammatory cytokines, antimicrobial peptides and chemokines and are a likely cause of pathologic inflammation in numerous gastrointestinal disorders. The primary objective for this course is to provide advanced information and conceptual knowledge regarding the mucosal immune system in health and disease.
25-260 Mucosal Pathogenesis - 1 credit
Mucosal Pathogenesis is an upper-level, 1-credit hour M&I course that focuses on the interactions of microbial pathogens with cells of the mucosal epithelium. Students will gain a detailed and comprehensive understanding of specific infectious microbial pathogens, and the mechanisms utilized by these microorganisms to associate, invade, and/or cause disease at the mucosal surface. Microorganisms to be discussed include those that target that respiratory tract, the gastrointestinal tract, and the genital/urinary tract. The course will comprise a combination of formal lectures by instructors, group discussions of scientific papers from the recent literature, and activity-based learning sessions including grant critique, manuscript review, and assigned topic presentations. Student participation in these activities will comprise 50% of the final grade. The remaining 50% will be based on performance of take home assignments associated with individual 2-week blocks.
25-261 Bacterial Toxin-Mucosal Cell Interactions - 1 credit
Bacterial Toxin-Mucosal Cell Interactions is a 1 credit hour upper-level M&I course that addresses the interactions between bacterial toxins and mucosal cells. The goal of this course is to provide students an appreciation of how bacterial toxins that target mucosal cells function as virulence factors and utilized as vaccines and for the development of clinical therapies. The course format includes formal lectures and paper discussions. The course will meet for 6 weeks during the third block of the fall semester (weeks 13-18). Cellular and Molecular Immunology (25-234) or Cellular Microbiology (25-236) are a prerequisite for this course.
25-262 Tumor Immunology - 1 credit
Tumor Immunology is an upper-level, 1-credit hour M&I course that will focus on the interactions of tumor cells with various components of the immune system. These interactions are complex, and immune-based strategies for treating cancer have had limited success in the clinic. This course will examine the following: (a) How the immune recognizes tumor cells as “foreign”, (b) Immune strategies for targeting cancer, (c) Barriers to achieving effective tumor immunity, (d) Monitoring the immune response to cancer, and (e) Use of animal models to study the interactions between tumor cells and the immune system. The goals of the course will be to gain an in-depth understanding of the complex interactions between tumor cells and the immune system, and to learn how animal models can be used to better understand these interactions. While the course will be heavily weighted towards the discussion of important papers in the field of Tumor Immunology, it will also involve didactic lectures. Students will be evaluated through attendance and participation (30% of final grade) and a final exam (70% of final grade). The course will meet twice a week for a total of 6 weeks.
25-263 Signaling in the Immune - 1 credit
Signaling in the Immune System is an advanced topic immunology course that focuses on different aspects of cell signaling and how these shape the immune response. Students will learn, in detail, how different immune cell types utilize distinct cell-surface or intracellular receptors to regulate their activity or differentiation state. The course will be divided into formal lectures by instructors introducing different topics, followed by a group discussion of scientific papers in that field.
25-264 Developmental Immunology - 1 credit
Upper-level 1 credit hour M&I course that focuses on the key molecular mechanisms regulating myeloid and lymphocyte maturation and adaptive immunity. Students will gain a detailed understanding of T and B cell development and antigen receptor repertoire selection.
Key processes covered during formal lectures:
1. Commitment of progenitor cells to the myeloid and lymphocyte lineages
2. Rearrangement of antigen receptor genes
3. Selection events that shape the antigen receptor repertoire
4. Proliferation of progenitors
5. Differentiation into functionally and phenotypically distinct lymphocyte subpopulations.
Key themes linking the material:
1. Transcription factors in immunology: shared factors – different roles
2. Cytokines and growth factors drive functional diversification
3. Lineage “commitment” preserves lineage flexibility
4. Distinctions between steady state homeostasis and immune responses
5. Distinctions between mice and humans
In addition to formal lectures by the instructors, the course will feature group discussions of seminal papers that have shaped current thinking in the field. Students will be evaluated by their participation during group discussion and by a single take-home final examination. The course will meet twice weekly for 6 weeks.
25-265 Immunological Tolerance - 1 credit
Immunological tolerance is defined as unresponsiveness to an antigen that is induced by previous exposure to that antigen. Tolerance to self-antigens, also called self-tolerance, is a fundamental property of a healthy immune system that is maintained by multiple overlapping mechanisms. Failure of self-tolerance results in autoimmune diseases that can affect every organ system of the human body. Conversely, the induction of self-tolerance may also be exploited for therapeutic purposes. In this mini-course, we will consider the general features and mechanisms of self-tolerance in T cells and B cells. These mechanisms include (1) anergy, (2) deletion by apoptosis, and (3) suppression by regulatory T cells. In addition, this course will consider select models of autoimmunity that have proven to be effective tools in our effort to understand tolerance as a complex biological process. The mechanisms of immunological tolerance constitute essential knowledge for all students training in Immunology.
In addition to formal lectures by the instructors, the course will feature group discussions of seminal papers that have shaped current thinking in the field. Students will be evaluated by their participation during group discussion and by a single take-home final examination. The course will meet twice weekly for 6 weeks.
25-266 Clinical Immunology - 1 credit
Clinical Immunology is an upper-level, 1-credit hour M&I course that will provide advanced information and conceptual knowledge regarding the human immune system in health and disease. The information presented in this course will: provide the student with a knowledge of general and specific tests to evaluate specific components of human immune function, lead to a fundamental understanding of diseases caused by primary or secondary abnormalities in immune function, provide a basic understa